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Up to this point, we have generally concerned our analyses with procedures that have as
the goal the examination of one or more a priori outcomes. With this chapter, we begin
to deviate from this method of examination in that we are now doing just as the name of
this procedure implies—exploring the data. Actually, some would say it is not even that
but rather “it is reconnaissance” (Kaiser, 1970, p. 402). Rather than having one or more a
priori outcomes, we are using exploratory factor analysis to reduce a large number of var-
iables into identifiable clusters of variables to better understand the structure of the data.

Our objectives are that, by the end of this chapter, you will be able to (a) understand the
concepts underlying exploratory factor analysis, (b) determine and interpret the results
of exploratory factor analysis, and (c) understand and evaluate how to screen data prior
to conducting exploratory factor analysis.

9.1 WHAT EXPLORATORY FACTOR ANALYSIS
IS AND HOW IT WORKS

As we visit the statistics lab today, we find that Addie Venture and Oso Wyse have been
tasked with an exploration analysis of data.

As graduate student researchers in the stats lab, Addie and Oso have become
quite accustomed to working with their teammates on data analyses that
examine one or more outcomes of interest. Many times, these outcomes have
been computed as composite variables from psychological assessments. While
Addie and Oso have appreciated the ability to group together individual items
to form various constructs, they had never really been concerned with the
process underlying that construction—until today, that is. Dr. Wesley, a faculty
member from the Higher Education program, is interested in examining the
factor structure of measures of perceived use of skills at home and at the
workplace for a select group of individuals who participated in the Survey of
Adult Skills, a large data collection effort from the Organization for Economic
Cooperation and Development’s Programme for the International Assessment
of Adult Competencies (PIAAC). Addie and Oso suggest the following research
question to Dr. Wesley: What is the underlying factor structure for perceived
use of skills at home and work? Given that dimension reduction is the goal
of the project, the team recommends exploratory factor analysis to answer
Dr. Wesley’s question. Always up for adventure and armed with statistical
knowledge, Addie and Oso are excited to embark on this task.

Globally, exploratory factor analysis (EFA) is a statistical procedure that allows us to
cluster together variables into what we’ll refer to in this chapter as factors (but are also
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known as constructs or latent constructs, a term we will use when we discuss confirma-
tory factor analysis). These variables may be, as just one example, a number of indices
designed to measure general skills. Examining each of the variables individually may
provide useful information simply by reviewing descriptive statistics of the individual
measures. However, even more useful information may be provided by examining the
underlying constructs from the variables, those variables that group together and make
the number of measures parsimonious and more manageable. In essence, what explor-
atory factor analysis allows us to do is to work with all variables simultaneously, but
at the same time know something about their underlying data structure. Exploratory
factor analysis is therefore often used to provide evidence of construct validity. The
underlying focus of factor analysis deals with finding common variance (distributed
among the factors) and eliminating the unique variance that is not of interest (where
total variance = common variance + specific variance + error variance).

Although confirmatory factor analysis will be introduced in detail in a later chapter,
it is important to broach the topic here so there is a good understanding of when each
is most appropriate. Confirmatory factor analysis is a statistical technique that can be
used to identify the factor structure of observed variables and to test the hypothesis
that a relationship exists between the respective observed variables and one or more
underlying latent constructs. Additionally, much of the terminology and concepts that
we will discuss in relation to EFA generalize to CFA. The titles of the procedures may
give some indication of when one is more appropriate than the other is. By nature of
exploration, EFA is appropriate when there is a lack of theory to dictate relationships
between the variables. Brown refers to this as a “data-driven approach” (2006, p. 14).
In comparison, CFA is appropriate when a strong theoretical base exists such that the
relationships between variables are known and can be specified in the modeling pro-
cess. In fact, it is very common for researchers to first conduct EFA prior to CFA so that
there is a better understanding of how the items relate to each other and the underlying
constructs or factors.

9.1.1 Characteristics

9.1.1.1 Principal Components Versus Exploratory Factor Analysis

Before we delve into this chapter, it is important to understand the difference between
principal components analysis (PCA, sometimes also known as ‘component factor
analysis’ or ‘component analysis’) and exploratory factor analysis (EFA, sometimes
known as ‘common factor analysis’). There is a difference, although in reading pub-
lished literature, it seems that many authors understand them to be used interchangea-
bly (and they should not be). If your goal is to estimate underlying factors and attach
some meaning to those factors (as a form of construct validity, for example), then
EFA is required. PCA, on the other hand, can be used to estimate and understand the
contributions of the variables to the linear components within the data, but PCA is
simply a method of decomposition—a technique for data reduction only. As stated
by Borsboom, “the extraction of a principal components structure, by itself, will not
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ordinarily shed much light on the correspondence with a putative latent variable struc-
ture” (Borsboom, 2006, p. 426). If the interest is in placing substantive meaning on
the factors extracted, EFA is the procedure needed. Throughout the chapter, it will be
assumed that EFA is the goal. However, keep in mind that generating PCA or EFA is
as simple as a toggle menu option in SPSS. While the results are mathematically dif-
ferent, the solutions you see may actually be quite similar. This is, again, one of those
times when you must be a responsible researcher and understand the goal of your
research (decomposition only, PCA, or extraction of meaning, EFA) so that you can
select the appropriate method.

9.1.1.2 Exploratory Factor Analysis Specification
Conditions and Decisions

There are a number of conditions that must be understood and decisions that must be
made when selecting to use and implement either PCA or EFA. These are related to

determining factorability
fitting the factor model
selecting the factor(s)
rotating the factor solution

aeoc o

As we’ll learn, researchers must first determine if factor analysis is appropriate for
both their research question and their data. Within factorability, we will discuss mea-
surement scale, sample size, and sample homogeneity, followed by tools for determin-
ing initial factorability. Second, researchers must select procedures to fit the model
and estimate the model parameters. Within this realm, factor extraction and factor
rotation will be reviewed. Third, the number of common factors to specify when fitting
the model has to be determined. Lastly, whether or not to rotate, and how to rotate if
needed, must be determined.

9.1.1.3 Factorability

Measurement scale and sample homogeneity are important considerations for
determining factorability. Sample size (discussed later in the chapter) is also a
consideration. In this section, we will also discuss tools for determining initial
factorability.

Measurement Scale of Variables

It is important to remember that factor analysis (PCA and EFA) has as the primary
requirement that a correlation matrix (denoted in statistical terms as uppercase bold
R, the input correlation matrix with unities—or 1.0—in the diagonal, which is also
referred to as the unreduced correlation matrix) be calculated from the variables in the
model. (Note that a covariance matrix can also be applied in EFA; interpretation tends
to be much easier with a correlation matrix. The remainder of the chapter will focus
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on a correlation matrix.) With conventional factor analysis, the computed correlation
matrix is a Pearson matrix. This, therefore, suggests that the variables applied must
be metric (at least interval in scale) so that a linear relationship exists between the
variables. (However, this does not guarantee that linearity will be met.) A bit more will
be added to this discussion as we talk about factor loadings later in the chapter. Even
though one of the conditions of conventional factor analysis is measurement that is
at least interval in scale, it is quite common to find factor analysis applied to Likert-
type items which are ordinal in scale (e.g., five-point scale ranging from strongly
agree to strongly disagree), particularly as the number of levels of the items increases.
And should you find that your ordinal items meet the assumption of linearity, then
proceeding with the factor analysis is fine (assuming other conditions and assump-
tions are satisfactorily met). However, items with small numbers of levels (less than
seven categories in particular) are often not good candidates for conventional factor
analysis, and the factors may be more difficult to interpret. Technically, binary (i.e.,
dichotomous) items can be factor analyzed with conventional methods, however the
interpretation can be problematic as the results can reflect variation in the endorse-
ment rate of the variables rather than the underlying construct (Fabrigar & Wegener,
2012). Categorical variables that have similar splits will tend to correlate even if the
context of correlation of the variables doesn’t make sense (see Gorsuch, 1983). This
problem is augmented with binary data where correlations tend to reflect similar “diffi-
culty’ as evidenced in a testing type of environment. If you do decide to proceed with
conventional factor analysis using categorical variables, the factor loadings should be
examined with extreme care to determine if they reflect ‘difficulty’ (where difficulty is
defined as approximately the proportion of individuals with a ‘1’ for their item score,
as opposed to a ‘0’) as compared to a substantive relationship. The use of binary data
in conventional factor analysis can also result in a factor solution with too many fac-
tors. In the case of categorical variables, dichotomous in particular, it is highly recom-
mended that a specialized factor analytic program that is designed for that type of data
be applied to it. Later in this chapter, SPSS categorical principal components analysis
(CATPCA), an add-on in SPSS, will be used to illustrate the application of ordinal data
with factor analysis.

Homogeneity of the Sample in Relation to
the Underlying Factor Structure

An important condition of factor analysis is that the sample of cases from which the
variables were measured must be homogenous in respect to the underlying factor
structure. In other words, if your collective sample of cases is known to differ, based
on some characteristic, on the set of variables for which you are factor analyzing, then
separate factor analysis should be performed for the groups that are anticipated to dif-
fer. For example, say that all employees of a company have been surveyed about their
perceptions of the work environment, and previous empirical research suggests that
those in management positions have different perceptions as compared to nonmanage-
ment positions. The factor analysis should be conducted separately for those groups
(i.e., management and nonmanagement) that are expected to differ.
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Initial Factorability Assessment

There are a number of indices that should be reviewed prior to conducting the factor
analysis that will help you gauge the extent to which the variables and the matrices
produced from them are factorable. These include (1) correlation coefficient values,
(2) Bartlett’s test of sphericity, (3) anti-image correlation matrix, and (4) Kaiser-
Meyer-Olkin measure of sampling adequacy.

Correlation coefficient values between the variables being factor analyzed should be
.30 (in absolute value terms) or greater. This will ensure sufficient relationships to jus-
tify examination of the potential underlying components. Correlations lower than .30
may be due to low variance, which can result when samples are homogenous (but does
not necessarily imply homogeneity in the sample). (However, correlations of more
complex scores, such as difference scores, may have correlations between .20 and .30
and still have variables that are extremely factorable.) If there are correlation coeffi-
cient values that are not satisfactory and that are not theoretically critical, remove the
variable with the lowest individual correlation value and rerun (doing so until, collec-
tively, the correlation values reach what you deem acceptable).

Bartlett’s test of sphericity is conducted to determine if the observed correlation matrix
is statistically significantly different from an identity matrix (i.e., diagonal elements
are 1 and off-diagonal elements are 0). Statistically significant results for Bartlett’s
test are desirable, as they allow you to reject the null hypothesis, which states that
the observed correlation matrix equals the identity matrix. We want to see redundant
variance, overlapping variance among variables, in order to reduce the variables into a
fewer number of latent factors, and this is accomplished with a statistically significant
Bartlett’s test. Should the null hypothesis not be rejected, this provides evidence that
the correlation matrix produced from the variables cannot be factor analyzed.

Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy (MSA) is an index of
shared variance in the variables and compares the magnitudes of the observed to those
of the partial correlation coefficients. MSA values range from zero to one, and large
values are another form of evidence to suggest that the variables are factorable. In its
early origination, Kaiser (Kaiser & Rice, 1974, p. 112) proposed the following guide-
lines for interpreting the index: in the .90s = marvelous; in the .80s = meritorious; in
the .70s = middling; in the .60s = mediocre; in the .50s = miserable; below .50 = unac-
ceptable. As we’ll see when we compute our factor analysis, an MSA for each individ-
ual item and an overall MSA will be generated. If the overall MSA is not satisfactory,
remove the variable with the lowest individual MSA value and rerun (doing so until
the MSA value reaches what you deem acceptable). The overall KMO-MSA numer-
ator is the sum of squared correlations of all variables, and the denominator is the
numerator value (i.e., the sum of squared correlations of all variables) plus the sum of
squared partial correlations of each variable i with each variable j, controlling for the
other variables. The idea behind the MSA is that the partial correlations (reflected in
the denominator) should not be relatively small if one is to expect distinct factors to
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emerge from factor analysis (i.e., creating a small denominator that will then provide
for a larger MSA value). The size of the MSA can therefore be expected to increase as
the following increase—sample size, average correlation, number of variables—and
as the number of factors decrease. In SPSS, the MSA values are provided on the diag-
onal of the anti-image correlation matrix.

9.1.1.4 Fitting the Factor Model

Factor Extraction

Assuming you have made it through the previous examination and have determined
that factor analysis is appropriate for your data, the next level of decisions has to deal
with implementing or actually computing the factor analysis. Beginning with this sec-
tion, we will discuss a number of concepts and procedures that should be understood
to fit the model appropriately. Fitting the model, in reference to factor analysis, is also
known as factor extraction. Although many times the algorithms will produce similar
results, this is not always the case. Therefore, understanding how they operate and
situations where they are most effective is needed.

Factor analytic models that generate two or more factors will have an infinite num-
ber of ways that the factors can be oriented in multidimensional space, each with an
equally best-fitting solution (Fabrigar & Wegener, 2012). Let’s say that we have a
factor model where two factors are suggested. If we think about our items in two-
dimensional space, the axes represent the factors and the space between the individual
observed variables represents their intercorrelations—variables closer together have
stronger relationships with each other. This implies that one single unique best-fitting
solution does not exist when the model generates more than one factor. Therefore,
this puts the burden on the researchers to select one solution. This decision process
of factors to retain is the factor extraction process. Good model fit is achieved when
the mathematical model for converting physical distance into predicted correlations
between variables is similar to the correlations among observed variables.

A number of different algorithms can be used to fit factor analytic models, all of which
calculate orthogonal factors that combine to reproduce the correlation matrix. Our dis-
cussion will focus on a few of the most common. Those commonly found in standard
statistical software include principal components, unweighted least squares, gener-
alized (weighted) least squares, maximum likelihood, principal axis factoring, alpha
factoring, and image factoring. Of these, principal components, principal axis, and
maximum likelihood are likely the most common and are those on which our discus-
sion will focus. In addition to its common use in EFA, maximum likelihood is also the
most commonly applied estimation method in CFA (Brown, 2006).

Which extraction method selected is the researcher’s choice. Generally, any extrac-
tion method will require rotation in order for the solution to be interpretable. The



EXPLORATORY FACTOR ANALYSIS mm 369

solutions from the different extraction methods will converge in situations where you
have a large number of cases and variables and communality estimates that are simi-
lar. Evidence of the stability of your factor solution can be seen in cases where there
is convergence of factor analytic solutions when using different extraction methods.
While applying every estimation procedure to your data would be akin to a fishing
expedition, it is quite common to select a small handful of estimation techniques to
test the stability of your factor analytic model under different estimation methods—for
example, first applying principal axis factoring then proceeding with maximum like-
lihood and ceasing the analyses when a sound solution is achieved. Generating factor
analysis using two different estimation methods has been recommended (Child, 2006).
Should the solutions result in discrepancies, an attempt to determine the reason(s) for
the discrepancies is appropriate, followed by generation of the factor model with a
third estimation technique (Child, 2006).

Principal Components

We have already broached the topic of principal components analysis as compared
to common factor analysis, thus we will not delve further into that difference other
than to mention a few notables as it relates to how the data is extracted. In a nutshell,
the variance is analyzed in PCA whereas the covariance (communality) is analyzed
in common factor analysis. In PCA, the goal is to extract the most variance from the
variables with each factor.

Unweighted and Generalized (Weighted) Least Squares

Both unweighted and weighted least squares methods of factor extraction attempt to
minimize the squared differences between the observed and reproduced (off-diagonal)
correlation matrices. The difference between the two is that variables that share sub-
stantial variance with other variables are weighted more heavily, and variables that
have more unique variance (i.e., less shared variance) receive less weight. The heavily
weighted items thus contribute more to the solution than the items with lesser weight.

Maximum Likelihood (ML)

Maximum likelihood estimation calculates factor loadings that maximize the proba-
bility that the observed correlation matrix would be sampled from the population. ML
is the most statistically advanced extraction method and one of the most commonly
applied.

Principal Axis Factoring

Principal axis factoring has communality estimates, which are estimated through an
iterative process, in the diagonal of the correlation matrix. The goal of principal axis
factoring is to extract maximum variance from the variables with each factor, and
this makes principal axis factoring less desirable in some situations as compared to
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other extraction methods that can be more effective in reproducing the correlation
matrix. Principal axis factoring is one of the most commonly applied extraction meth-
ods (Child, 2006).

Alpha Factoring

Alpha factoring uses an iterative procedure to estimate communalities that then maxi-
mize coefficient alpha (i.e., an index of reliability). Unlike score reliability in psycho-
metric research (i.e., consistency of subjects), alpha factoring focuses on determining
consistency of variables, in other words, extracting factors that are consistently found
when repeated samples of variables (not subjects) are drawn from a population of
variables (not subjects).

Image Factoring

Image factoring uses multiple regression, with each variable serving as the dependent
variable and the remaining as the independent variables, to predict image scores that
are then used to compute a covariance matrix. The communalities in this extraction
method are the variances from the image score covariance matrix. Factor loadings
represent covariance values (as compared to correlation values seen in the other esti-
mation procedures) between the factors and variables.

Communalities

The communality, 4°, interpreted as the reliability of the variable, measures the per-
cent of variance (squared multiple correlation) of a given variable explained by all
the factors jointly. The total communality is calculated by adding the squares of all
the loadings of a variable across the common factors. It is the sum of all the common
variance—the proportion of common variance within a variable. Computationally, the
communality is the sum of squared factor loadings for a variable across all the factors.

A variable that has a low communality (.20 or below) has low common variance and
high specific and error variance. A variable with a low communality may be a candi-
date for removal from the model, as this suggests that the factor model may not be
working well for that variable. Low communalities across the set of variables indicate
that the variables have weak relationships with each other. However, please note the
following: A low communality can still be meaningful if the variable is contributing
to a well-defined factor. The communality coefficient is not the critical element per se,
but rather it is the extent to which the variable plays a role in the interpretation of the
factor that is key.

It is also possible to have communalities that are too large. A communality that exceeds
1.0 is evidence of a spurious solution and may reflect a sample size that is too small or a
factor model that has too few or too many factors. If you find yourself in this situation,
and it is unfeasible to collect more data (either more cases and/or more variables), then
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remove the variable with the largest communality and rerun, repeating this process
until the communality estimates are less than one. It is important to note that commus-
nalities are unaffected by rotation but are impacted by extraction method, thus the only
communalities provided in standard statistical software such as SPSS are the initial
and extracted estimates. Extracted communalities represent the percent of variance in
a given variable explained by the extracted factors, which are often fewer in number
than all the possible factors, resulting in coefficients less than 1.0 (as a side note, the
communalities will be less than one even initially, with exceptions noted previously).
Assuming most of the common variance is contained within those extracted factors,
then the unique variance can be calculated as 1 — /2.

9.1.1.5 Factor Retention

Once variables are factored, the researcher must determine how many factors to retain.
While this may hold only a small fraction of this chapter, the number of factors to
retain has been characterized as “the crucial decision” in the EFA process as when
the optimal number of factors are retained, other EFA results will generally be similar
(O’Connor, 2000, p. 396). When too few factors are extracted, important information
is lost, potentially important factors are neglected, error in factor loadings increases,
and other problematic issues arise (Zwick & Velicer, 1986). When too many factors are
retained, factors are unnecessarily split resulting in low loadings and the attribution of
importance to factors which really are not (Zwick & Velicer, 1986).

Theoretically, there are as many potential factors as there are variables. For example,
in a case where 12 variables are being factor analyzed, theoretically, there are 12 fac-
tors. Obviously, a researcher would be ill-guided to retain that many factors, as the goal
of factor analysis is parsimony (at least in respect to data reduction)—retention of the
smallest number of factors that explains the most variance of the observed variables.
Historically, the number of factors to retain from a factor analytic solution have relied
more often on visual (and subjective) inspection and subjective rules rather than empir-
ical evidence, and there is not one single tool recommended. Rather, multiple decision
rules are recommended and deemed desirable, as is the application of more sophisticated
factor retention strategies such as parallel analysis and bootstrapping (Thompson &
Daniel, 1996). Despite this recommendation, much published research exists that does
not adhere (e.g., Gaskin & Happell, 2014; Henson & Roberts, 2006). Never fear, by the
end of the chapter you will have the skills to call yourself a sophisticated researcher!

Scree Plots

Scree plots, where the number of factors to retain is based on where the elbow bends in
the plot, are a visual tool that can be used to decide on the number of factors to retain.
We see an example of a scree plot in Table 9.4. The factor numbers are plotted on the X
axis and the eigenvalues are on the Y axis. In interpreting the scree plot, we look for the
clearest delineation where the line goes from being diagonal to being horizontal. Then,
to determine the number of factors suggested by the scree plot, we count the number of
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straight lines (not dots), stopping at the point where the line becomes more horizontal
than diagonal. As with all visual tools, however, there is a certain degree of subjectivity
that comes with making this decision. Even among experts, the reliability of scree plot
interpretation is low (Streiner, 1998). When used as a decision rule to determine the
number of factors to retain, scree plots generally perform better than the eigenvalue
greater than one rule but are less accurate than parallel analysis (Zwick & Velicer, 1986).

Kaiser’s Rule (Eigenvalues Greater Than One)

This rule is also known as the Unity Rule or the Kaiser-Guttman Criterion as it was
proposed by Guttman and modified by Kaiser. Determining the number of factors to
retain using Kaiser’s Rule is quite simple—only those factors with eigenvalues greater
than 1.0 are retained and factors with eigenvalues that are less than 1.0 are dropped.
The value of one is the cut point given that the total variance contributed by each
variable is one, and the variance of the factors retained should be greater than the con-
tribution of only one variable. Eigenvalues, also known as characteristic roots or latent
roots, are a measure of variance that are computed from the input (i.e., unreduced)
correlation matrix. More specifically, eigenvalues measure the amount of variance in
the total sample that is accounted for by each factor, and eigenvectors summarize this
variance for the respective correlation or variance-covariance matrix (Brown, 2006).
Factors with small eigenvalues suggest the respective factor is contributing little to
explaining the variance in the variables.

Despite its widespread, and often sole, application to determining the number of fac-
tors to retain, the application of eigenvalues greater than one consistently misestimates
the number of factors (either over- or underestimating) (Zwick & Velicer, 1982, 1986).
Other criticisms are that an overestimation of the number of factors occurs when there
are low communalities and a large number of variables and an underestimation of
the number of factors to retain occurs when there are a small number of variables or
when the sample size is very large. Kaiser’s Rule tends to work best in conditions of
moderate to large communalities, modest sample sizes, and 20—50 variables. Given
these limiting conditions within which Kaiser’s Rule tends to produce fairly accurate
estimates, applying Kaiser’s rule should only be done as a starting point (if at all) when
generating your factor model. When appropriate, the results should be reviewed and
the model recomputed based on a fixed number of factors.

Parallel Analysis

In comparison to the eigenvalue greater than one rule and visual examination of scree
plots, there are statistically based procedures that exist for determining the number of
factors to retain. Parallel analysis is one such procedure that is considered superior for
determining optimal solutions for factor retention, and with 92% accuracy, has been
considered the most accurate of the common methods used for retaining factors (includ-
ing Kaiser’s rule, Velicer’s minimum average partial—MAP, scree plots, and Bartlett’s
test) (Zwick & Velicer, 1986). Introduced by Horn (Horn, 1965), parallel analysis is a



EXPLORATORY FACTOR ANALYSIS mm 373

method by which the cut-off point for factor retention can be judged, where below the
cutoff, the factors possess generally trivial error variance. In simple terms, parallel anal-
ysis generates numerous replications of analyses that are drawn from random, normally
distributed data with sample size N and number of variables V, concentrating on the
number of factors that account for more variance than the factors derived from the ran-
dom data (O’Connor, 2000). In other words, eigenvalues are extracted from the random
data sets that reflect the same number of cases and variables as the observed data (thus
the random data parallels the observed data in cases and variables). In the example we
will later work with, we have 191 cases and 8 variables. In parallel analysis, there would
then be 191 multiplied by 8 random data matrices generated with eigenvalues computed
for both the observed correlation matrix and each random data matrix. Decisions on the
number of factors to retain are based on comparing the eigenvalues from the original
data to the eigenvalues of the random data. Factors are retained when the ith eigenvalue
from the observed data is greater than the ith eigenvalue from the random data (O’Con-
nor, 2000). Current practice recommends the use of the eigenvalue which corresponds
to the percentile selected by the researcher (e.g., 95th) (Glorfeld, 1995).

Although parallel analysis is not currently available within the point-and-click user
interface of popular statistical software such as SPSS, there is user-friendly syntax
that has been written that allows users to perform this procedure with their own data
within software such as SPSS and SAS (O’Connor, 2000). The syntax can be copied
(alleviating potential error in rewriting the code), and the user has to specify only a
few simple elements: (a) number of cases, (b) number of variables, (c) location of the
data, and (d) the percentile at which the researcher wishes the analysis to be generated.

Number of Variables per Factor

Researchers also need to consider the number of observed variables per factor in their
solution. Three variables per factor is the absolute minimum needed to define a factor
(Child, 2006). Why at least three variables are needed can be understood by consider-
ing a straight line with only two points as estimation of a linear relationship. We can
imagine how our line may change if error is introduced by drawing two small circles
around each point. Rather than simply two unique points, now these points can be
placed anywhere within that circle—this is our margin of error. We can quickly see how
different our line may be depending on where the points are placed within the circle.
This illustrates that two points are insufficient for estimation of a linear relationship
(Child, 2006). Factors that are defined by very few variables (e.g., two or three) may be
underdetermined and very unstable when the model is replicated (Brown, 2006).

9.1.1.6 Factor Rotation

Once the data are extracted, it is most always the case that the solution be rotated in
order for it to be interpretable. In the world of factor analysis, rotation simply means
that the axes (i.e., factor vectors or reference axes) are placed in a different position
by turning about the origin (Child, 2006). If the factors are not rotated, axes will lay
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between the clusters of variables and the variables will not clearly differentiate to a
primary factor. [t is important to note that rotation does nothing to the mathematical
fit between the observed and reproduced correlation matrices, as there is mathemat-
ical equivalence between solutions prior to rotation and orthogonally rotated solu-
tions. Rather, rotation serves only to clarify and improve the ability to interpret the
solution—there will be clearer differentiation by factor of the factor loadings of the
variables. As we discussed with extraction methods, data that has clear correlational
patterns will likely produce similar results regardless of rotation method. There are
only two types of rotations: orthogonal and oblique, although there are quite a few
methods available in standard statistical software that will accomplish the rotation.

Orthogonal Rotation

Variables that are orthogonal are unrelated, and perfect orthogonality is characterized
by a correlation value of zero. In orthogonal rotation, axes are rotated at 90-degree
angles. Going back to our general understanding of relationships, a correlation of zero
means that knowledge of one variable in no way enhances our knowledge of the sec-
ond. Thus, in the context of factor rotation, orthogonal rotation will produce uncor-
related factors. Considering many situations where factor analysis is applied in the
social sciences in particular (and more specifically as we think about human behavior
and attributes), however, it is likely the case to anticipate some correlation between
factors as (more often than not) the constructs being measured are seldom completely
independent of the others. In cases where some correlation between factors does exist,
orthogonal rotation will result in a less interpretable solution than oblique rotation.
Even if there are substantial correlations between factors, orthogonal rotation will con-
strain the solution to produce uncorrelated variables, thereby resulting in misleading
solutions (Brown, 2006). In cases where there is indeed a lack of relationship between
factors, orthogonal and oblique rotations will produce quite similar results.

There are a number of different types of orthogonal rotation techniques available in
standard statistical software. These include varimax, quartimax, and equamax, each
of which works with a different statistic to maximize or minimize it. Varimax rotation,
the most common orthogonal rotation, maximizes the variance of the factor loadings
within the factors and across the variables to simplify the factors. Quartimax rotation,
on the other hand, maximizes the variance of the factor loadings within the variables
and across the factor loadings to simplify the variables. Equamax attempts to bridge
varimax and quartimax by simultaneously simplifying both the factors and the varia-
bles. Equamax is the least preferred orthogonal rotation, as research suggests it is unsta-
ble in situations other than when the number of factors can be specified with confidence.

Obligue Rotation

Factors that are oblique are related, and perfect obliqueness is characterized by a cor-
relation value of one (in absolute value terms). When oblique rotation is applied, the
factor axes are rotated independently of each other at different angles (i.e., not just
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90 degrees, as is the case with orthogonal rotation). Going back to our general under-
standing of relationships, a correlation of one means that knowledge of one factor (in
this case) perfectly enhances our knowledge of the second factor. Thus, in the con-
text of factor rotation, oblique rotation will produce correlated factors (not correlated
variables). While oblique seems to be the most defensible option of the two rotations
(given that it is reasonable to assume there would be correlation between constructs),
be prepared for the possibility that it may increase the difficulty in attaching meaning to
your factors. This is because there will likely be an increased number of cross-loading
variables in the oblique, as compared to orthogonal, rotated solution. Cross-loading
variables are variables that have similar factor loadings for multiple factors. If you are
unsure which rotation to select, you may wish to test oblique rotation first and review
the factor correlation matrix. Small factor correlations (e.g., less than .30) may war-
rant orthogonal rotation. There are a few different types of oblique rotation techniques
available in standard statistical software, including direct oblimin and promax.

Associated Matrices

The type of rotation selected will alter the matrices generated in your factor solution. In an
orthogonal rotation solution, the structure matrix is simply the factor-loading matrix (and
is the only matrix that requires review). Oblique rotations will result in generation of both
a structure and a pattern matrix. The structure matrix coefficients represent the variance
in the observed variables explained by a factor, both a unique (i.e., relationship between
the variable and the factor, as with the pattern matrix) and common (i.e., relationship
between the variable and the shared variance among the factors) contribution. In oblique
rotations, the structure matrix is the product of the pattern and factor correlation matrices,
and the loadings in the structure matrix will often be larger than those in the pattern matrix
because they reflect overlap in the factors (i.e., are inflated due to this), unless there is a
weak relationship between the factors. The pattern matrix coefficients or loadings repre-
sent unique contributions only, i.e., unique relationships between the variables and fac-
tors. Generally, the larger number of factors, the lower the coefficients in the pattern
matrix since there is more common contribution to the variance explained. Because both
a structure and pattern matrix are generated with oblique rotation, this requires examina-
tion of both when interpreting the meaning of the factors. Of the two matrices, the pattern
matrix is the one that is most often reported and interpreted (Brown, 2006).

9.1.1.7 Factor Loadings

In simple terms, the factor loading is the coordinate of a variable along a classification
axis. It reflects the relationship between a factor and an observed variable and is the
slope of increase (when positive) or decrease (when negative) in the observed variable
for each unit of increase or decrease in the factor. The factor-loading value is interpreted
in the same units as the measured variables. Now, this is where consideration of the
measurement scale of items in the factor analysis come into play. . . . This type of index
that measures the relationship between the factor and observed variables is meaningful
if, and only if, the observed variables are measured in such a way that the units can be
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ordered or ranked and there is equal distance between the units—this implies the varia-
bles must be interval or ratio scale. Nominal and ordinal items (even with three or more
categories) are usually insufficient to meet this condition (Fabrigar & Wegener, 2012).

The factor loading provides information on the relative contribution that an individ-
ual variable makes to a factor, and the researcher must decide which variables load
onto which factor. An often-followed, ‘moderately rigorous’ guideline is that a varia-
ble should have a factor loading of at least .30 in order to be retained with that factor;
however, this rule should be applied only in models with samples of 80 or more (as
with samples of this size, a correlation coefficient is statistically significant at an alpha
of .01) (Child, 2006, p. 63). A variable with a factor loading of .30, when squared, is
interpreted as variance, and this would mean that variable accounts for slightly less
than 10% (9% specifically) of the common variance of the factor.

A squared factor loading is a measure of variance accounted for, similar to R squared.
More specifically, it estimates the amount of variance in a factor that is accounted for
by the individual variable—the proportion of variance in the item response or variable
scores that are explained by a factor. EFA allows the decomposition of observed vari-
ance into both common/shared variance and unique variance. In the ideal situation, a
variable will have a large coordinate for only one axis and low coordinates for all other
axes—providing evidence to suggest that the variable relates to one and only one factor.
It is possible to have negative factor loadings. Factors that are defined by variables with
both positive and negative factor loadings are called bipolar factors (Child, 2006). The
percent of variance in all the variables accounted for by each factor is computed as the
sum of the squared factor loadings for that factor divided by the number of variables—
which is also the same as dividing the eigenvalue of a factor by the number of variables
in the model. Box 9.1 summarizes the process of fitting the factor model.

BOX 9.1 FITTING THE FACTOR MODEL

Element Options
Factor Select an algorithm:
Extraction * Principal components

» Unweighted and generalized (weighted) least squares
* Maximum likelihood (ML)

* Principal axis factoring

* Alpha factoring

 Image factoring

Communalities  Review communalities:
* Low communalities (< 2.0): consider removing unless inclusion of the variable is
key to interpreting the factor
* High communalities (> 1.0): may be evidence of a spurious solution, and may
reflect a sample size that is too small or a factor model that has too few or too
many factors. Remove the variable with the largest communality and rerun the
EFA—repeating this process until the communality estimates are less than one.
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Factor Determine the number of factors to retain:

Retention Scree plots: Subjective visual tool; can be used as a guide but do not rely on this
absent other more objective means

Eigenvalues greater than one: Kaiser’s Rule works best and produces fairly
accurate results in conditions of moderate to large communalities, modest sample
sizes, and 20-50 variables. Given these limiting conditions, applying Kaiser’s
rule should only be done as a starting point (if at all) when generating your factor
model.

Parallel analysis: Most accurate option for determining the number of factors

to retain. Decisions on the number of factors to retain are based on statistical
analysis, comparing the eigenvalues from the original data to the eigenvalues of
randomly generated data.

Number of Review the number of variables per factor:
Variables per * Minimum: 3 per factor
Factor

Factor Rotation  Determine how to rotate the factors:
* Orthogonal (uncorrelated): varimax, quartimax, and equamax
* Oblique (correlated): direct oblimin and promax

Factor Review factor loadings:
Loadings * Ideally, a variable will have a large factor loading for only one factor
* A ‘moderately rigorous’ recommendation: a variable should have a factor loading
of at least .30 in order to be retained with that factor
° This rule should be applied only in models with samples > 80

9.1.2 Sample Size

Unlike traditional statistical procedures, there is not a power calculation to suggest
appropriate sample size for factor analysis. What exists are a number of sample size
recommendations for factor analysis that have been made throughout the years, with
none reaching consensus as the absolute criterion that must be followed and all later
being determined invalid (MacCallum, Widaman, Zhang, & Hong, 1999). These rec-
ommendation are generally based on a subject-to-variable ratio (STV) or absolute
sample size per number of cases (N).

Case or subject-to-variable ratio (STV) recommendations range from two times the
number of cases (Kline, 1979) to five or more times the number of items with a case-
to-item ratio greater than or equal to 5 and a minimum of 100 cases, regardless of the
case-to-item ratio (Bryant & Yarnold, 1995; Suhr, 2006), more than 5 times the number
of items to allow for missing data (Suhr, 2006), 10 times the number of items (Nunally,
1978), and 51 more cases than the number of variables (Lawley & Maxwell, 1971);

Other criterion are based on an absolute number of cases (N), with 100 cases being
the suggested bare minimum sample size (Gorsuch, 1983; MacCallum et al., 1999), at
least 150-300 (tending toward 150 if items are not highly correlated) (Hutcheson &
Sofroniou, 1999), at least 200 (Guilford, 1954), at least 250 (Cattell, 1978), and a
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sliding scale ranging from 100 to 1,000 (with 100 = poor, 200 = fair, 300 = good,
500 = very good, and 1,000 or greater = excellent) (Comrey & Lee, 1992).

All this to be said, many researchers today would likely agree that these recommen-
dation for STV and absolute number of cases are weak criteria to follow to estimate
the sample size for EFA, and there is research to suggest the invalidity of these rules
(MacCallum et al., 1999). What is more important is the factorability of the model, as
seen through communalities (percent of variance in an variable that is explained jointly
by all factors), the degree of overdetermination (ratio of factors to variables), the size of
the factor loading, and general model fit. Simulation research suggests that estimating
factor structure is achievable, even with small sample sizes (particularly N > 20), given
the following conditions are met: (a) high communalities (approximately .8 to .9),
(b) small number of expected factors to be retained (2 to 4), and (c) low model error
(which is likely evidenced in situations where communalities are high; RMSR = .00 to
.06) (Preacher & MacCallum, 2002). Other simulation research has shown that factors
with four or more variables with factor loadings of .60 or greater are interpretable
regardless of the sample size (Guadagnoli & Velicer, 1988). Solutions with lower fac-
tor loadings (.40) can still be interpreted if the number of cases is at least 150 and the
number of variables per factor is larger (> 10) (Guadagnoli & Velicer, 1988).

The take-home message for sample size with EFA is this: Do not adhere to a recom-
mendation criterion for STV or absolute number of cases. Rather, design your study
so that you collect the largest sample size that resources will allow. In some cases, this
may mean that the sample size will be unnecessarily small. In those instances—and
all others, as a matter of fact—be prepared to defend your sample size using previous
empirical research, such as the simulation research presented here. And if you are a
researcher so inclined to study methodological issues, this is an area ripe for continued
examination.

9.1.3 Power

There are no power calculations to suggest appropriate sample size for exploratory
factor analysis given a priori or post hoc power. What exists are a number of sample
size recommendations as presented previously.

9.1.4 Effect Size

Factor analytic solutions, in and of themselves, do not produce effect size results. Once
composite variables are created based on the factor analytic solutions and then those com-
posite variables are applied in an inferential procedure, effect sizes can then be generated.

9.1.5 Assumptions

As with most multivariate statistical procedures, there are a number of assumptions
that must be considered with factor analysis, either EFA or PCA. These include
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(a) independence, (b) linearity, (c) absence of outliers (both bivariate and multivariate)
in cases and variables, and (d) lack of extreme multicollinearity and singularity. As pre-
viously discussed, a condition required for conventional factor analysis is continuous
data (assuming the factor analytic procedure is computed from a Pearson correlation,
as we will assume in this chapter). A large sample size is not necessarily required (as
detailed previously) but may be helpful depending on the factor model. Factor analysis
is actually robust to violations of the assumption of normality and normality is really
not applicable in EFA as it is with many other multivariate procedures. The only excep-
tion to this is in the situation where tests of inference are used to determine the number
of factors to retain (e.g., when using ML estimation), and in this case, multivariate
normality is an assumption. Examination of univariate normality, which is not overly
sensitive as are multivariate normality tests, can be done through examination of skew-
ness and kurtosis, formal tests of normality, and plots (e.g., Q-Q plots). In terms of
multivariate normality, a macro in SPSS (DeCarlo, 1997) (illustrated with MANOVA
in chapter 4) can be used to examine a number of multivariate normality indices that
include (a) multivariate kurtosis (Mardia, 1970), (b) multivariate skewness and kurto-
sis based on Small’s (1980) multivariate extension of univariate skewness and kurtosis
(Looney, 1995), (c) multivariate normality omnibus test (Looney, 1995), (d) largest
squared and plot of squared Mahalanobis distance, and (e) critical values for hypoth-
esis test for a single multivariate outlier using Mahalanobis distance (Penny, 1996).

9.1.5.1 Independence

The first assumption is concerned with independence of the observations. Violations
of this assumption can detrimentally impact standard error values and thus any result-
ing hypothesis tests. Testing for this assumption is a bit nebulous in exploratory factor
analysis, as there are no independent and dependent variables that allow for this type
of examination. In the absence of statistical evidence, we will rely on theoretical evi-
dence: If the units have been randomly sampled from a population, there is evidence
that the assumption of independence has been met.

9.1.5.2 Linearity

As you recall, factor analysis uses relationships among the variables as the basis for
determining factors with conventional factor analysis doing so via a Pearson correlation
matrix. Therefore, it is assumed there is a linear relationship among the variables. Bivari-
ate scatterplots can be examined to determine the extent to which this assumption is held.

9.1.6.3 Absence of Outliers in Cases and Variables

Outliers in factor analysis operate in an unfavorable fashion, just as they do in other
procedures. One or more outlying cases (either univariate or multivariate) can have
undue and unwanted influence on the factor model. In addition to the ways we’ve
screened for outliers in previous procedures (e.g., boxplots), they can also be screened
by reviewing standard scores of the variables. Standardized scores with absolute
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values of 3.29 or greater (which equates to values more than 3—1/4 standard deviation
units from the mean; about .05% of cases are above and below this point in a stan-
dardized normal distribution) should be flagged as outliers. Multivariate outliers can
be determined by Mahalanobis distance values, which can be calculated using multiple
regression, discriminant analysis, or logistic regression (or via simple matrix algebra,
without generating other analyses). Multivariate outliers are evidenced by statistically
significant Mahalanobis distance scores (alpha = .001 if you tend toward the liberal
edge, which is appropriate with EFA), evaluated using a chi-square distribution with
degrees of freedom equal to the number of variables. To generate Mahalanobis dis-
tance, apply all the variables as independent variables with the dependent variable
being a binary variable coded 1 for potential outliers and 0 for all other variables. The
process for examining outliers is therefore to look for univariate outliers first. If any
are detected, then screen for multivariate outliers.

In factor analysis, it is also possible to have outlying variables, that is, variables that
are unrelated to others in the factor model. These outlying variables can be determined
by reviewing the following: (a) squared multiple correlations with all other variables
and (b) weak correlations with the factors that are identified in the factor analytic
model. Outlying variables that are identified can be disregarded.

9.1.5.4 Lack of Extreme Multicollinearity and Singularity

In other procedures, we have discussed how multicollinearity can be problematic
because it makes the matrix inversion process unstable. As you recall, multicollinear-
ity is a very strong linear relationship between two or more of the predictors. You may
be wondering how it is the case that this can be problematic in factor analysis, as one of
the indices we use to determine the ability to factor analyze is the relationship between
variables and there is no matrix inversion. In factor analysis, we are concerned with
severe and extreme multicollinearity, which can be problematic in factor analysis. Sin-
gularity is a special case of multicollinearity; it is perfect multicollinearity and occurs
when two or more variables perfectly predict and are therefore perfectly redundant.
This can occur in factor analysis (just as it did in multiple regression), for example,
when a composite variable as well as its component variables are used as predictors in
the same factor analytic model.

How do we detect violations of this assumption? Remember that we are looking only
for extreme multicollinearity, so we will limit our detection methods quite a bit as com-
pared to our data examination in multiple regression. For EFA, the simplest method is
to conduct a series of multiple regression models, one regression model for each var-
iable where that variable is the dependent variable and all remaining variables are the
independent variables. If any of the resultant R; values are close to one (greater than
.9 is a good guideline to go by), then there may be an extreme multicollinearity prob-
lem. However, large R* values may also be due to small sample sizes, so be cautious
in interpreting cases where the number of cases is small. If the number of variables is
greater than or equal to n, then perfect multicollinearity is a possibility.
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M TABLE 9.1
Assumptions and Violation of Assumptions: Exploratory Factor Analysis

Assumption Effect of Assumption Violation
Independence Influences standard errors of the model and thus hypothesis tests
Linearity Reduces interpretability of the factor analytic solution
Absence of outlying Exerts undue influence on and distorts the factor analytic solution

cases and variables

Lack of extreme Reduces ability to separate effects of variables
multi-collinearity

Multivariate normality Minimal effect when violated with exceptions including (a) when hypothesis
testing is conducted as part of the EFA, (b) when maximum likelihood is used to
estimate the factor model, and (c) with small sample sizes

9.1.5.5 Concluding Thoughts on Assumptions

As mentioned in previous chapters, there is no rule stating that research that violates
assumptions must be scrapped. However, researchers who face violations of assumptions
must handle these situations on a case-by-case basis, considering both the goal of the
analyses and the extent to which the assumptions were violated and the resulting effect
of violation. It is also important that researchers present the evidence found, along with
justification for decisions that were made. The assumptions are summarized in Table 9.1.

9.2 MATHEMATICAL INTRODUCTION SNAPSHOT

Now that we understand the conditions and decision points, there are a few additional
foundational topics related to the underlying mathematics of exploratory factor analysis
that may be helpful with which to become acquainted. Note that this is not meant to be
a primer on the mathematical proofs nor is it meant to serve as a foundation for which
hand calculations can be made. Rather, it is meant to provide a bit more of the mathe-
matical representation for those who are interested in delving deeper into this aspect.

Using matrix algebra, we can express the correlational structure of the common factor
model as follows:

P=ADA" + D,

In this equation, P refers to the population correlation matrix of observed variables.
The factor-loading matrix, A (lambda), represents the linear influence strength and
direction of the latent or component factors on the observed variables. In this matrix,
the columns represent the factors and the rows represent the observed variables. Thus,
A, refers to the factor loading for (the value of which is the path between) the effect
or influence of common factor one on observed variable three.

The transpose of the factor-loading matrix is represented by lambda superscript 7, A”.
As reviewed in the material on matrix algebra in the appendix, transposing means that
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what was originally in the rows now become columns (and what was originally in the
columns now become rows).

The covariance matrix among the unique factors is represented by D, (the subscript
for which is psi). The diagonals of this matrix are the variances of the unique factors.
The off-diagonals are the covariances and are zero when orthogonality is assumed.

The correlation matrix between the factors is represented by @ (phi). When orthogo-
nality of errors is assumed (i.e., the factors are uncorrelated), the population correla-
tion matrix is simply: P=AA" + D,,.

Because our interest is in the conceptual understanding of EFA, we’ll end our math-
ematical discussion at this point. The summary of the underlying mathematics of
EFA was drawn from Fabrigar and Wegener (2012), which provides a very accessible
account. Readers interested in learning more of the mathematics are referred to that
source, among others.

M TABLE 9.2

Factor-Loading Matrix Example

Factor Matrix®

Factor

[Common Factor 1] [Common Factor 2]
Index of use of numeracy skills at home A, = .843 A, =—175
Index of use of ICT skills at home A, = .673 5, = 066
Index of use of reading skills at home A, = 528 A, = 153
Index of use of numeracy skills at work A= 330 A, = 086
Index of readiness to learn Ay = 412 Ag, = 504
Index of use of task discretion at work Ay = .059 Ay, = 311
Index of learning at work A, = .062 A,, = .300
Index of use of planning skills at work Ay =-183 Ag, = 296

Extraction Method: Maximum Likelihood.
a. Two factors extracted. Six iterations required.

M TABLE 9.3

Example of Correlation Matrix of Common Factors

Factor Correlation Matrix

Factor [Common Factor 1] [Common Factor 2]
1 1.000
2 @, = .165 1.000

Extraction Method: Maximum Likelihood.
Rotation Method: Promax with Kaiser Normalization.
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9.3 COMPUTING EFA USING SPSS

As we know by now, conventional factor analysis requires continuous data. There are
many situations, however, where EFA of ordinal survey (e.g., Likert) items is desirable.
Thus, our use of SPSS will first illustrate EFA with continuous data, and this will be fol-
lowed by an illustration of the use of parallel analysis for factor retention. Next, we will
illustrate how to use one of the SPSS add-ons for conducting EFA with ordinal data.

9.3.1 Computing EFA With Continuous Data Using SPSS

Next, we consider SPSS for conducting exploratory factor analysis with data that is
continuous in scale (should you have only ordinal items, please see the following SPSS
section, “Computing EFA With Ordinal Data”). Before we conduct the analysis, let us
talk about the data. The data we are using is the 2013 Survey of Adult Skills (http://
www.oecd.org/site/piaac/surveyofadultskills.htm), available through the Organisation
for Economic Co-operation and Development (OECD). Thank you to OECD for mak-
ing this data publicly available.

The Survey of Adult Skills, conducted in 33 countries, is part of the Programme for
the International Assessment of Adult Competencies (PIAAC), and the first results
from the survey were released in 2013. Measured in the survey are “key cognitive and
workplace skills needed for individuals to participate in society and for economies to
prosper” (see http://www.oecd.org/site/piaac/surveyofadultskills.htm). Adults ages 16
to 65 were interviewed in their homes, with 5,000 individuals from each country partic-
ipating. It is important to note that the Survey of Adult Skills is a complex sample (i.e.,
not a simple random sample). Although each country was allowed to create their own
sampling design and selection plan (for example, some countries oversampled some
groups of individuals), it had to adhere to technical standards published by the PIAAC.
For example, the U.S. sampling design was a four-stage stratified probability propor-
tional to size design. If you access the full dataset, you will find the last few variables
are various weights as well as stratum and unit variables. We won’t get into the tech-
nical aspects of this, but when the data are analyzed to adjust for the sampling design
(including nonsimple random sampling procedure and disproportionate sampling), the
end results are then representative of the intended population. The purpose of the text is
not to serve as a primer for understanding complex samples, and thus readers interested
in learning more about complex survey designs are referred to any number of excellent
resources (Hahs-Vaughn, 2005; Hahs-Vaughn, McWayne, Bulotskey-Shearer, Wen, &
Faria, 2011a, 2011b; Lee, Forthofer, & Lorimor, 1989; Skinner, Holt, & Smith, 1989).
Additionally, so as to not complicate matters any more than necessary (learning EFA is
generally complicated enough!), the applications in this textbook do not illustrate how
to adjust for the complex sample design. As such, the results that we see should not be
interpreted to represent any larger population but only that select sample of individuals
who actually completed the survey. I want to stress that the reason why the sampling
design has not been illustrated in the textbook applications is because the point of this
section of the textbook is to illustrate how to use statistical software to generate various
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procedures and how to interpret the output and not to ensure the results are representa-
tive of the intended population. Please do not let this discount or diminish the need to
apply this critical step in your own analyses when using complex survey data, as quite
a large body of research exists that describes the importance of effectively analyzing
complex samples and provides evidence of biased results when the complex sample
design is not addressed in the analyses (Hahs-Vaughn, 2005, 2006a, 2006b; Hahs-
Vaughn et al., 2011a, 2011b; Kish & Frankel, 1973, 1974; Korn & Graubard, 1995; Lee
et al., 1989; Lumley, 2004; Pfeffermann, 1993; Skinner et al., 1989).

Now, let’s review the data. We are using the PIAAC_EFA.sav file. This is data from
the U.S., and the data file has been delimited to include only individuals who were
between the ages of 25-29 [AGEGSLFS = 3], who were employed or participated in
education or training during the 12 months prior to completing the survey [NEET = 0],
and who reported having ‘above high school’ education [B_Q01la T = 3] (n = 288).
The size of this sample is more than sufficient to generate EFA, but at the same time
small enough to work with for readers who may be using a version of SPSS that limits
the number of cases. Additionally, it creates at least an intuitively homogenous sam-
ple that would be anticipated to respond similarly on the items. (Note: The complete
PIAAC Survey of Adult Skills data file, which includes 5,010 cases, is available from
the textbook’s companion website and is titled PIAAC SurveyOfAdultSkills.sav.)

Before we run the data, it’s always important to examine frequency distributions of
the variables that will be used in the model to assess missing data, potential data entry
problems, and similar. With this data, we have some missing data (it has already been
coded by the survey collectors as 9996), and thus I’ve taken the liberty to perform
listwise deletion on the missing items (resulting in #n = 191); however, the remaining
variables in the data file have been left as is so that you may practice your data cleaning
skills in working with ‘real data.’

Let’s look at the data. For the EFA illustration, we’ll be working with 13 indices (vari-
ables 1-13 in your SPSS file), each of which is measured on a continuous scale.

Index of use of numeracy skills at home (basic and advanced—derived)
Index of use of numeracy skills at work (basic and advanced—derived)
Index of use of ICT skills at home (derived)

Index of use of reading skills at home (prose and document texts—derived)
Index of use of task discretion at work (derived)

Index of learning at work (derived)

Index of use of planning skills at work (derived)

Index of readiness to learn (derived)

Index of use of ICT skills at work (derived)

Index of use of influencing skills at work (derived)

. Index of use of reading skills at work (prose and document texts—derived)
. Index of use of writing skills at work (derived)

. Index of use of writing skills at home (derived)

NN R WD =

—
wio=2S 0
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The first 13 variables are the indices for EFA. The next three variables in the SPSS
dataset were used to delimit the sample. A few variables used for data screening are
included (outlier and MAH 1, Mahalanobis distance, which we will discuss as we
test assumptions). This is followed by three variables in the dataset that represent the
country and participant ID variables. I’ve left those in the data file just in case you
are interested in merging variables from the full dataset with this smaller, delimited
file. Each row in the data set still represents one individual. As seen in the screenshot
below, the SPSS data is in the form of multiple columns that represent the variables on
which the respondents were measured. For the EFA illustration, we will work with the
13 continuous index measures.
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We will conduct EFA using the 13 index
measures (10 are illustrated here).

Step 1. To conduct exploratory factor analysis, go to “Analyze” in the top pull-down
menu, then select “Dimension Reduction,” and then select “Factor.” Following the
screenshot below (Step 1) produces the “Factor Analysis” dialog box.
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2.98049 2 C

A 7429
/b Factor... /L 9
E} Correspondence Analysis... Pg
1) Optimal Scaling... F7.
] 2.07432 3.0854

Step 2. Click the 13 index measures and move into the “Variables” box by clicking
the arrow button (see screenshot Step 2).
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Step 3. From the Factor Analysis dialog box (see screenshot Step 2), clicking on
“Descriptives” will provide the option to compute various descriptive statistics (see
screenshot Step 3). From the Factor Analysis: Descriptives dialog box, place a check-
mark in all the boxes. Click on “Continue” to return to the Factor Analysis dialog box.

ﬁ Factor Analysis: Descriptives

EFA:
Step 3

r StatIStICS

E] \'.vaanate descriptives
. [ Jmhal solution

-Correlat|on Matrix =

IE] Coeflicients ':[E"fﬂverse

[ Slgmﬁcance IeveBs [+ Reproduced
= _Qetermlnant @ Anti- -image
@ EMO and Bartlett's test of sphericity

| Continue | Cancel Help
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Step 4a. From the Factor Analysis dialog box (see screenshot Step 2), clicking on
“Extraction” will provide the option to select various options related extraction meth-
ods and what is displayed (see screenshot Step 4a). Using the pull-down menu, click
on “Maximum likelihood.” Recall that we discussed how solutions from the different
extraction methods will converge in situations where you have a large number of cases
and variables and communality estimates that are similar. We also stated that evidence
of the stability of the factor solution can be seen in cases where there is convergence of
factor analytic solutions when using different extraction methods. Thus, you may want
to select a small handful of estimation techniques to test the stability of your factor
analytic model under different estimation methods, although for this illustration, we
will apply only one.

- ,
fi§ Factor Analysis: Extraction EFA:

Method: |Maximum likelihood = Step 4a

|| "maipal components o
_ Unweighted least squares
- Generakized east squares

D) fcree plot

Inrotated factor solution

~Extract—{Alpha factoring
| @ Base Image factoring

—TrTgTTTrOTOTT

Eigenvalues greater than:

Fixed number of factors
Factors to extract:

Maximum Iterations for Convergence: 1000 II

[Cuntinue][ Cancel ][ Help ] |

Step 4b. Also from the Factor Analysis: Extraction dialog box, place a checkmark
in the box next to the following: (1) unrotated factor solution and (2) scree plot (see
screenshot Step 4b). Under the heading for ‘Extract,’ click the radio button for ‘based
on eigenvalue’ and then enter 1 in the box for ‘eigenvalues greater than:’. Recall
that the application of Kaiser’s rule consistently (often substantially) overestimates the
number of factors (Zwick & Velicer, 1982, 1986), thus we won’t base our factor solu-
tion interpretation on it as an important piece of the results. Knowing that it usually
overestimates the number of factors to retain, however, it does give us a starting point
from which to work. Depending on the solution, we may choose to rerun the model and
base the number of factors to extract on a ‘fixed number of factors.” Leave the default
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setting for ‘Maximum Iterations for Convergence’ at 25. Click on “Continue” to return
to the Factor Analysis dialog box.

Factor Analysis: Extraction - EFA:
Method: |Maximum likelihood  ~ | Step 4b
rAnalyze D_isplay

¢ [¥ Ynrotated factor solution
' . [ geree plof |

e
ety

I| i @ Based on Eigenvalue

! Eigenvalues greaterthan: (1}

Fixed number of factors
Factors to extract:

Maximum Iterations for Convergence:

[continue || cancel |[ Help |

Step 5. From the Factor Analysis dialog box (see screenshot Step 2), clicking on
“Rotation” will provide the option to select various options related to rotation meth-
ods. Place a checkmark in the box next to the following: (1) rotated solution and
(2) loading plot(s) (see screenshot Step 5). In terms of the factor-loading plot, in the
event that only one factor is extracted, no plot will be displayed. When two factors
are extracted, a two-dimensional plot will be displayed. When three or more factors
are extracted, a three-dimensional factor-loading plot of only the first three factors
extracted is displayed. Under the heading for ‘Method,’ click the radio button for ‘Pro-
max’ and then enter 4 in the box for ‘Kappa’ (which is the default). (Other values
of kappa can be introduced, with the ideal kappa value being one that results in the
simplest factor structure with low correlations among the factors; higher kappa values
lead to larger correlations among factor and simpler loading structures. The default of
4 is based on previous research which suggests this value produces a generally good
solution (Hendrickson & White, 1964).) Change the default setting for ‘Maximum Iter-
ations for Convergence’ to 1000. The number of iterations to convergence simply
defines how many iterations the algorithm can take to perform the rotation. It is likely
the case that 1000 is overkill, but it doesn’t hurt to set it at a large value just in case it’s
required. Click on “Continue” to return to the Factor Analysis dialog box.
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Clicking on “Rotation” will allow you to define E/,ﬂ'ﬁ Factor Analysis: Rotation | EFA:
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methods, allowing the factors to be correlated. Varimax Equamax

K .,

Direct Oblimirs” @ Promax
Delta: |g e Kappa
rDisplay
'::I] éotated solutioﬁ W anding plot(s)

i Varimax, quartimax, and equamax are
! orthogonal rotation methods, assuming
i unrelated factors and maintaining the axes at

90 degrees.

What is displayed in the output is dependent
on the method of rotation. The rotated
pattern and factor transformation matrices are
displayed with orthogonal rotations. The
pattern, structure, and factor correlation
matrices are displayed with oblique rotations.

Maximum lterations for Convergence: |1000

IContinueI Cancel || Help

Step 6. From the Factor Analysis dialog box (see screenshot Step 2), clicking on
“Scores” will provide the option to save the variables created as composite scores
and to display the factor score coefficient matrix (see screenshot Step 6). Many
times, researchers select to skip this step and use methods such as the mean sum
(i.e., adding all the items together and dividing by the number of items) as a method
to create the composite score. If you do choose to allow the software to create your
composite score, there are three methods from which to choose to estimate the
factor score coefficients. The regression method produces factor scores that have a
mean of 0 and a variance that equals the squared multiple correlation between the
estimated factor scores and the true factor values. The factor scores estimated from
the regression method may be correlated even if the factors are orthogonal. The
Bartlett score produces factor scores that have a mean of 0. This method minimizes

r e ——
i!'ﬁ Factor Analysis: Factor Scores EFA:
[F]:Save as variables Step 6

Method

erson-Rubin

[ Display factor score coefficient matrix

IConﬁnue I[ Cami][ Helg
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the sum of squares of the unique factors over the range of variables. The Anderson-
Rubin method is a modified Bartlett method that produces factor scores with a
mean of 0 and standard deviation of 1 and that maintains orthogonality of the esti-
mated factors. Thus, the scores produced are uncorrelated. At this time, do not
make any selections on this screen, as we will adhere to the mean sum method for
creating a composite score. Click on “Continue” to return to the Factor Analysis
dialog box.

Step 7. From the Factor Analysis dialog box (see screenshot Step 2), clicking on
“Options” will bring up the dialog box that allows various options for dealing with
missing values, as well as options for displaying the coefficients (see screenshot
Step 7). We will leave the default setting for the Missing Values as ‘exclude cases
listwise.” For our purposes, because we have already dealt with missing values, which
selection is made for missing values is moot. As you conduct your own research,
however, should you have missing values, it should be dealt with prior to generating
the factor analysis and not within the EFA, as none of the three options provided are
acceptable means for which to address missing values (the exception may be if you
have an extremely small percentage of missing, such as 5% or less). Under the heading
for Coefficient Display Format, place a checkmark in the box for ‘sorted by size.” This
will make it much easier to see the clusters of variables produced in the factor solution,
as it groups the items by factor in descending order of factor-loading size. Then click
on “Continue” to return to the Factor Analysis dialog box. From the “Factor Analysis”
dialog box, click on "OK” to generate the output.

i!'ﬁ Factor Analysis: Options EFA:

Step 7

—rvhssmg Values

. E:xclude cases listwise
‘ () Exclude cases pairwise
© Replace with mean

—Coefrment Display Format

LI
T Sn PO T R

Ik §nrted by size

A [ ORI |
‘an

|:| Suppress small coefficients

Absolute value below: | 10 l

[Cmﬁnue][ Cancel ][ Help ]

Interpreting the output. Annotated results are presented in Table 9.4.
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SPSS Results for the Exploratory Factor Analysis Example
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Kaiser-Meyer-Olkin Measure of Sampling Adequacy.
Bartlett's Test of Sphericity

Approx. Chi-Square
df
Sig.

ey

Measure of Sampling Adequacy (MSA): An overall MSA of .50 or above should be achieved
before proceeding with factor analysis. According to Kaiser and Rice (1974), our MSA is ‘middling.’

factor analysis is appropriate.

Bartlett’s Test of Sphericity: This is a statistical test to determine if the overall correlation matrix is
an identity matrix (i.e., the null hypothesis is that our overall correlation matrix is equal to an identity
1  matrix), and thus we want to find statistical significance here—suggesting that we do not have an
identity matrix. In practical terms, a statistically significant Bartlett's test indicates at least some of the
variables have significant correlations. A statistically significant Bartlett’s test is desirable and suggests

In this example, we've met both criteria suggesting it is appropriate to factor analyze our variables.
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2 Measures of Samping Aueqn:tylskl

The anti-image covariance matrix presents the negatives of the partial covariances, and
thus the anti-image correlation matrix provides the negatives of the partial correlation

diagonal of the anti-image correlation matrix (denoted by footnote ‘a’). Reviewing the anti-
image correlations, items with individual MSA values below .50 are considered
unacceptable and should be excluded. In this example, all are acceptable.

E coefficients. The measure of sampling adequacy (MSA) for a variable is displayed on the
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-------------------- 1+ “Extraction” communalities present the shared or common variance—that
“Initial” proportion of each variable's variance that can be explained by the factors
communalities that are retained. Variables with high extracted communalities are
assume all the represented well in common factor space. Variables with low
variance associated communalities are not. The extracted communalities are the reproduced
with a variable is variances from the factors extracted. If you look at the diagonal of the
common. reproduced correlation matrix, you will see the extracted communalities.

Communalities measure the
percent of variance in a given
variable explained by all the factors
jointly. In other words, the
communality is the proportion of
common variance within a variable.

Communalities®

Initial Extraction

Index of use of numeracy skills at home (basic and
447 .547
advanced - derived)

Index of use of numeracy skills at work (basic and You may want to consider

removing variables with low
communalities as this may indicate
that the factor model may not be

1 i
i I
1 1
i I
| :
i I
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209 a51] | ;
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410 407| 1 working well for that variable. 1
i I

: :

i I

1 1

i I

: :
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advanced - derived)
Index of use of ICT skills at home (derived) 463 .545
Index of use of reading skills at home (prose and

document texts - derived) When there are low communalities

Index of use of task discretion at work (derived) 191 232 in general across most or all of the
Index of learning at work (derived) 231 232 set of variables, this may suggest
Index of use of planning skills at work (derived) 294 278 that the variables are unrelated or
Index of readiness to learn (derived) .253 .288 W:gwgvf:?tﬁg E:%rena:lizr:;tlri]tilr.
Index of use of ICT skills at work (derived) .378 .638 coefficient is not the key piece to
Index of use of influencing skills at work (derived) .362 .999 note, per se, but rather the extent
Index of use of reading skills at work (prose and 461 849 to W'hiCh the_Variable assists in
document texts - derived) interpreting the factor.

Index of use of writing skills at work (derived) .382 417 'TTTmmTmmmmmmmmomoooooomoooooees
Index of use of writing skills at home (derived) .440 428

Extraction Method: Maximum Likelihood.
a. One or more communality estimates greater than 1 were encountered during

iterations. The resulting solution should be interpreted with caution.

For the sake of brevity, the output from the additional models generated are not presented.
However, in addition to removing ‘Index of use of influencing skills at work,” the following
variables also had communalities greater than 1.0 and were removed through the iterative
process of running the factor solution, reviewing communalities, and removing the one variable
with the largest communality: ‘index of using writing skills at home,” ‘index of using reading
skills at work (prose and document text),” ‘index of using writing skills at work,” ‘index of using
ICT skills at work.” Thus a total of 5 of our original 13 variables were removed from the model
as they suggested they were not factorable, leaving 8 variables to factor analyze.

Because the output prior to the communalities table has been annotated in detail, it will not be
presented again. The descriptive statistics and bivariate correlation coefficients do not change
because variables are removed from the set that are factor analyzed, and thus they are not
presented again. Rather, we’ll pick up with the tables that do reflect new, adjusted values as a
result of removing variables from the set.
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Inverse of Correlation Matrix

With an overall MSA of .50 and a statistically significant Bartlett’s test, we've again met both criteria

Index of use
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skills athome | skills atwork | Index of use (prose and Index of use Index of use Index of
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skills athome (basic and 1.702 -315 =712 -.381 .001 074 240 -.032
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skills at work (basic and -315 1121 .010 -.028 -.066 -.085 -.055 -.070
advanced - derived)
Index of use of ICT skills
athome (derived) -712 .010 1.578 -.201 .060 -.003 022 -317
Index of use of reading
skills athome (prose and -.381 -.028 -.201 1.308 -.006 -.091 =017 -.203
document texts - derived)
Index of use of task
discretion at work .001 -.066 .060 -.006 1.07M 022 -140 ~228
(derived)
Index ot laarning at work o74 085 003 091 022 1.062 135 155
(derived) - E E - E
Index of use of planning
skills at work (derived) 240 -055 022 -017 -140 -135 1.090 -030
Index of readiness to
learn (derived) -.032 -.070 =317 -.203 -229 -1565 -.030 1.261
KMO and Bartlett's Test .
; 9
" . " I
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. L\ 695 |
Bartlett's Test of Sphericity ~ Approx. Chi-Square 193.696
df 8
PgaaN
. e
Sig 4 .000 |}

suggesting it is appropriate to factor analyze our variables.

Anti-image Matrices

Index of use
Index of use Index of use of reading
of numeracy of numeracy skills athome
skills athome | skills atwork | Index of use (prose and Index of use Index of use Index of
(basic and (basic and of ICT skills at document oftask Index of of planning readiness to
advanced - advanced - home texts - discretion at learning at skills atwork leamn
derived) derived) (derived) derived) work (derived) | work (derived) (derived) (derived)
Anti-image Covariance  Index of use of numeracy
skills athome (basic and 588 -165 -.265 =17 .000 o4 130 -015
advanced - derived)
Index of use of numeracy
skills atwork (basic and -165 892 006 -019 -.055 -072 -045 -049
advanced - derived)
Index of use of ICT skills
athome (derived) -.265 .006 634 -.097 036 -.002 013 -160
Index of use of reading
skills athome (prose and -7 -.019 -.097 764 -.004 -.066 -012 -123
document texts - derived)
Index of use of task
discretion atwork 000 -.055 036 -.004 934 020 -120 -169
(derived)
Index of learning at work
(derived) o4 -.072 -.002 -.066 .020 842 =17 -116
Index of use of planning
skills atwork (derived) 130 -.045 013 -012 -120 =17 918 -.022
Index of readiness to
learn (derived) -.015 -.049 -160 -123 -169 -116 -.022 793
> Index of use of numeracy
skills at home (basic and 663 -228 -434 -.255 000 085 a17 -022
advanced - derived)
Index of use of numeracy
skills atwork (basic and -228 008 -.023 -.060 -.078 -.050 -.059
advanced - derived)
Index of use of ICT skills TN
athome (derived) -434 .008 \_!_ll[]_‘/ -140 046 -.002 016 -225
Index of use of reading
skills athome (prose and -.255 -.023 -140 -.005 -.077 -014 -158
document texts - derived)
Index of use of task )
discretion atwork 000 -.060 046 -.005 { 021 -129 -197
(derived) h
Index of learning at work
(derived) 055 -.078 -.002 -077 021 -125 -134
Index of use of planning PN
skills atwork (derived) A77 -.050 016 -.014 -129 -125 -‘\535—",’ -.025
Index of readiness to
learn (derived) -.022 -.059 -.225 -158 -197 -134

Reviewing the anti-image correlations, items with individual MSA values below .50 are

considered unacceptable and should be excluded. In this example, all are again acceptable.



M TABLE 9.4 (continued)
SPSS Results for the Exploratory Factor Analysis Example

Communalities

Initial | Extraction. .}
Index of use of numeracy skills at home (basic and advanced - derived) 412 741
Index of use of numeracy skills at work (basic and advanced - derived) .108 116
Index of use of ICT skills at home (derived) 458
Index of use of reading skills at home (prose and document texts - derived) .303
Index of use of task discretion at work (derived) .100
Index of learning at work (derived) .094
Index of use of planning skills at work (derived) 121
Index of readiness to learn (derived) 424

Extraction Method: Maximum Likelihood.

Although all our communalities are now under the threshold of
1.0 so as not to generate a warning, we do see that we still have

however we will retain them in our set of variables given that we

i some communalities that are relatively small (under .30),

have already removed quite a few variables.

Total Variance Explained

: Initial Eigenvalues IIr _________________ {Rotation Sums of |
1 :: Extraction Sums of Squared Loadings I!Squared Loadings®
Factor ! Total % of Variance | Cumulative % I| Total % of Variance | Cumulative % 1 Total
1 I 2313 28.909 28.909 :: 1.762 22.028 22.028 : 1.779
2 : 1.344 16.800 45.709 :l .594 7.430 29.458 : 656
3 : 971 12.135 57.844 :I———— ——————— 7—————‘|____ ]
4 1 .894 11.177 69.021 |,
5 : 791 9.887 78.907 :
6 1 665 8.317 87.224 |,
7 : 620 7.749 94.974 :
8 1 .402 5.026 100.000 |,

‘Initial eigenvalues’ presents the
variance explained by the initial
solution. Only two factors in the
initial solution have eigenvalues
greater than 1, accounting for
about 46% of the variability in the
original variables. This suggests
much unexplained variation. While
we do not suggest applying

E *Extraction sum of squared loadings’
Kaiser’s rule to determine the E

presents the variance explained by
the extracted factors before rotation.
The cumulative variability explained
by the two factor extracted solution
is about 29%, about 17% less than
the initial solution. This means about
17% of the variation explained by
the initial solution is lost as a result
of factors unique to the original
variables and variability unexplained
by the factor solution.

number of factors to extract, if
you do apply that rule to your
data, the ‘initial eigenvalues’
should be eigenvalues reviewed to
make the decision as these
eigenvalues are derived from the
unreduced input correlation
matrix.

In the social and behavioral sciences,
it is common to find around 60% of
the total variance explained in factor
analytic models (Child, 2006).

*Rotation sums of squared
loadings’ provides the
variance explained by the
extracted factors after
rotation. Note the footer
regarding our oblique
rotation (i.e.
squared factor loadings)
cannot be added together to
reflect total variance.

, sums of



M TABLE 9.4 (continued)
SPSS Results for the Exploratory Factor Analysis Example

Scree Plot
2.57 Interpreting the scree plot is subjective,
however look for the clearest delineation
where the line goes from being diagonal
to being horizontal.
2.0 Then, to determine the number of factors
suggested by the scree plot, count the
number of straight lines (not dots),
stopping at the point where the line
) becomes more horizontal than diagonal.
=1 1.5+
©
>
(=
&
i 1.0
0.5
0.0 ()
)

1 2 3 4 5 _§
Factor Number@

NOTE!
Remember that there is a fair amount of subjectivity
in interpreting the scree plot. With this graph, there
appear to clearly be two factors with much less
variance accounted for by factors three through five.

Factor Matrix® <

i The factor matrix presents the
i unrotated solution. We rotated our
i solution (and this will nearly always

Factor
~—_

Index of use of numeracy
Kills at h basic and 843 175 be the case), thus we are not
skills at home (basic an ' - interested in these results.

advanced - derived) | e e e e e e e

Index of use of ICT skills at

673 .066
home (derived)
Index of use of reading skills
at home (prose and 528 153

document texts - derived)
Index of use of numeracy
skills at work (basic and .330 .086
advanced - derived)

Index of readiness to learn

412 .504
(derived)
Index of use of task

.059 311
discretion at work (derived)
Index of learning at work

.062 .300
(derived)
Index of use of planning

-.183 .296

skills at work (derived)

Extraction Method: Maximum Likelihood.

a. 2 factors extracted. 6 iterations required.



M TABLE 9.4 (continued)
SPSS Results for the Exploratory Factor Analysis Example

Goodness-of-fit Test

The null hypothesis for the goodness-of-fit test is

1 1
1 1
! i
1 g .
) . i that the factor model sufficiently describes the i
Chi-Square df Sig. . _ y cescn |
e ' data. The results of this test provide evidence of |
{ I . . ]
9.564 13 L729F | the extent to which our factor solution reproduces
---- 1
1 the variance-covariance matrix. In this example, |
1 . . . P 1
i we fail to reject the null hypothesis providing !
1 . .
! evidence that the factor model does indeed !
1 . . . . 1
1 describe the data—in other words, the relationships !
I . . . .
1 among the variables is sufficiently described by the |
1 H 1
1 factor model and good fit is suggested. i
1
!, ______________________________________________ 1
Reproduced Correlations
Index of use
Index of use Index of use of reading
of numeracy of numeracy skills athome
Index of Index of use skills athome skills atwork Index of use (prose and Index of use
Index of readiness to of ICT skills at (basic and (basic and of planning document of task
Iearning at learn home advanced - advanced - skills atwork texts - discretion at
work (derived) (derived) (derived) derived) derived) (derived) derived) work (derived)
Reproduced Correlation  Index of learning atwork a
(derived) 094 177 062 000 046 077 079 097
Index of readiness to
leamn (derived) 177 424 311 259 179 074 295 181
Index of use of ICT skills
athome (derived) 062 a1 4587 556 228 -104 366 060
Index of use of numeracy
skills at home (basic and 000 259 556 7417 263 -.206 419 -.005
advanced - derived)
Index of use of numeracy
skills at work (basic and 046 179 228 263 1167 -.035 187 046
advanced - derived)
Index of use of planning
skills at work (derived) 077 074 -104 -.206 -.035 212 -.051 081
Index of use of reading
skills athome (prose and 079 295 366 419 187 -.051 303 079
document texts - derived)
Index of use of task
discretion atwork .097 181 060 -.005 .046 .081 079 100*
(derived)
Index of learning at work
(derived) -.010 -.016 001 052 061 028 -.060
Index of readiness to
|earn (derived) -.010 030 -013 -.018 -.048 001 025
Index of use of ICT skills
athome (derived) -016 .030 -.002 -.052 -.007 008 -.046
Index of use of numeracy
skills at home (basic and 001 -013 -.002 030 005 000 020
advanced - derived)
Index of use of numeracy
skills atwork (basic and 052 -018 -.052 030 048 -021 040
advanced - derived)
Index of use of planning
skills at work (derived) 061 -.048 -.007 005 048 003 059
Index of use of reading
skills athome (prose and .028 001 008 000 -021 .003 -.030
document texts - derived)
Index of use of task
discretion atwork -.060 025 -.046 020 .040 059 -.030
(derived)

Extraction Method: Maxiium Likelihood.
a. Reproduced communalities

b. Residuals are compyted between observed and reproduced correlations. There are 5 (17.0%) nonredundant residuals with absolute values greater than 0.05.

The correlation matrix based on the extracted factors is the reproduced
correlation matrix, and these coefficients should be very close to the values in the
original correlation matrix. When that happens (i.e., the reproduced and original
coefficients are very close in value), the values in the residual matrix will be close to
zero (as the residual values reflect the difference—as simple subtraction—between
the original and the reproduced matrix) and the extracted factors account for much
of the variance in the original correlation matrix—therefore, the extracted factors
represent the original data well. The values on the diagonal of the reproduced
correlation matrix are also the values presented as extracted communalities.

In this example, our residuals are quite small, the largest being about .50 in absolute
value, suggesting the extracted factors are representing the original data well.



M TABLE 9.4 (continued)
SPSS Results for the Exploratory Factor Analysis Example

The rotation we selected was

-
] 1
i i
. . . !
Factor E oblique rotation (a§sum|ng :
' correlated factors) using promax !
1 2 ! rotation. Oblique rotations will |
— |
Index of use of numeracy skills at home (basic and I X E produce both a factor pattern !
advanced - derived) | seofl -219 ! matrix (which are the coefficients !
_ ) | | i for the linear combination of the
Index of use of ICT skills at home (derived) | .670 | .034 | variables; the factor loadings of !
Index of use of reading skills at home (prose and 514 129 1 each variable onto the factor) and |
|
document texts - derived) | |- ! a factor structure matrix (which !
! ) |
Index of use of numeracy skills at work (basic and I I ' arg correlations between the |
] 4 - derived | 322 | o071 1 variables and the factors—the |
advanced - derived) — — [ — ' ' product of the pattern and factor i
Index of readiness to learn (derived) .355 | 4901| E correlation matrices—thus taking E
Index of use of task discretion at work (derived) .022 | 312 | | into account the relationship E
|
Index of use of planning skills at work (derived) -219 | 309 | 1 betweendfa'::tors). hItr:]aS been E
. . | suggested that both the pattern
Ind f | t k (d d .027 301 | .
ndex of learning at work (derived) — _| E and structure matrices be used to E
Extraction Method: Maximum Likelihood. ! interpret the factors (Gorsuch, E
i
Rotation Method: Promax with Kaiser Normalization. H 1983) 1
. . . . ! H
a. Rotation converged in 3 iterations. E The pattern and structure matrices E
' will be identical with orthogonal E
E rotations (recall that orthogonal !
! means that the factors are not |
E assumed to correlate). !
Factor L e H
1 2
T T
Index of use of numeracy skills at home (basic and | .833 | 076
advanced - derived) I | -
Index of use of ICT skills at home (derived) I 676 I The factors are identified by
Index of use of reading skills at home (prose and I 535 I 214 reviewing the coefficients.
document texts - derived) I ’ I ’ Variables that are associated
Index of use of numeracy skills at work (basic and I I with factor 1 have high values
advanced - derived) 338 i d241 for factor 1 but not factor 2.
) ) [ (Note that this is where
Index of readiness to learn (derived) 436 | .549 sorting by size s important as
Index of use of task discretion at work (derived) .074 | 315 I the software automatically
Index of learning at work (derived) 077|305 | arranges the variables in
Index of use of planning skills at work (derived) -168|] .273 I descending value, making it

easy to see the set of
variables that load most
strongly on each factor.)

Extraction Method: Maximum Likelihood.

Rotation Method: Promax with Kaiser Normalization.

E Although the values in the pattern and structure i
E matrices are slightly different, both suggest that i
' the same variables load on the same factors. '

Factor Correlation Matrix rTTIooTTTToTTTTmTeT TTTTTTTTTToToTmeT e '
i1 The factor correlations are generated only
Factor 1 2_ ! when oblique rotation is selected
1 1.000 {165 (correlations with orthogonal rotations are
2 165 1.000

correlations between factors are relatively
weak which may warrant re-analysis
assuming orthogonality.

i

1

i

set to zero). In this example, the !

1

i

Rotation Method: Promax with Kaiser Normalization. i
1

1

:
1
Extraction Method: Maximum Likelihood. i
1
i
1
1
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SPSS Results for the Exploratory Factor Analysis Example

Factor Plot in Rotated Factor Space
1.0

0.5

Factor 2
o
o

This plot shows the factors in rotated,
-0.5 two-dimensional space (given that
: two factors were extracted). We can
see how the variables that load the
strongest on each factor tend to
clump together.

-1.0

-1.0 -0.5 0.0 0.5 1.0
Factor 1

Factor Plot in Rotation Factor Space

In situations where three or more
factors are generated, the factor plot
presented will be a three-dimensional

plot of the first three factors.
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9.3.1.1 SPSS Parallel Analysis for Determining Factor Retention

Next, we consider SPSS for conducting parallel analysis (PA). When you run the par-
allel analysis program, it is important that the data file is open so that the program will
recognize that data file as the one with which to generate the PA. We will continue to
work with the PIAAC_EFA.sav dataset.

PA Step 1. As mentioned previously, this is not available in the point-and-click user
interface but can easily be performed with syntax available from O’Connor (2000).
[Additional annotated code, along with syntax to generate artificial raw data that may
be helpful for getting a feel for how it works, is accessible online at https://people.
ok.ubc.ca/brioconn/nfactors/rawpar.sps.] To open a new syntax file, click on “File”
then “New” then “Syntax.” Following the screenshot below (see screenshot EFA Paral-
lel Analysis: Step 1) produces the “Syntax Editor.”

EFA Parallel Analysis:

@Q PIAAC_EFA_PA_8VARIABLES.sav [DataSetl]| Step 1

Dljile Edit View Data Transform  Analyze Direct Marketing  Graph
B

Qpen ' | & syntax

3 -
Open Database (! Output JL
(&) Read Text Data... (& script
Read Cognos Data... 433
il 3.57861
Ml Close Ciri+F4
iy i ] 2.89841

Step 2. It is most helpful to access an electronic copy of the article or the supplemen-
tary online material (see https://people.ok.ubc.ca/brioconn/nfactors/rawpar.sps) so that
the syntax can be copied and pasted directly into the SPSS syntax viewer (however, it
has also been provided in Table 9.5). When the syntax is copied into the syntax editor,
the code that needs your input will clearly be displayed (see screenshot EFA Parallel
Analysis: Step 2). These include the following:

B The GET line tells SPSS that the file currently open is the one that should be used
to generate the parallel analysis. For ease, the dataset we are using, PIAAC_EFA
.sav, is organized so that the eight variables we will factor analyze are grouped
together. In this instance, the GET syntax is GET raw / FILE = * / missing=
omit / VAR = NUMHOME to READYTOLEARN. Specifying FILE = * tells the
program to read the SPSS data file that is open (thus make sure there is only
one dataset open when you run the program, and the one that is open is the one
from which you want the parallel analysis generated). The VAR = NUMHOME to
READYTOLEARN. tells the program only to generate the parallel analysis on the
variables within this range (in this illustration, it happens to be the first eight var-
iables in the data file).


https://people.ok.ubc.ca/brioconn/nfactors/rawpar.sps
https://people.ok.ubc.ca/brioconn/nfactors/rawpar.sps
https://people.ok.ubc.ca/brioconn/nfactors/rawpar.sps
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The number of parallel datasets to compute needs to be defined (100 is the default
and is an appropriate starting place): compute ndatsets = 100.

The percentile must be specified (95th is common): compute percent = 95.

The kind of parallel analysis to compute must be specified with 1 referring to PCA
and 2 referring to principal axis/common factor analysis (which is what we will
generate in this illustration): compute kind = 2.

The type of distribution must be specified with 1 being normally distributed and
2 being permutations of the raw data: compute randtype = 1. It is important to
note that the distributions of the observed variables remain the same during the
parallel analysis procedure. As noted by O’Connor, “Permutations of the raw
data set are thus highly accurate and most relevant, especially in cases where the
raw data are not normally distributed or when they do not meet the assumption
of multivariate normality” (see https://people.ok.ubc.ca/brioconn/nfactors/raw-
par.sps). O’Connor recommends specifying normally distributed data first (i.e.,
compute randtype = 1.) to get a general idea of the number of factors that the
parallel analysis suggests retaining. Then specify distributions as permutations
of the raw data (i.e., compute randtype = 2.) with a small number of datasets
(e.g., 100) to see how long the program takes to run. Assuming the time for
running the program is doable, then run the parallel analysis program with the
number of parallel data sets desired for your analyses (with 1,000 generally
being sufficient).

File Edit View Data Transform Analze Graphs Utiiies Add-ons Run -
e EFA Parallel Analysis:
& Ty | 3
SEa 0=~ HELA W Step 2
=
@@EO@E‘I —
set set mxloops=9000 printback=off width=80 seed = 1953125. O
matrix. 2 matnx
3 0
GET 4 y
& er the
compute B *
% da / missing=omit"
compute 8
9 UMHOME to READYTOLEARN.
compute 10 el sets here
1"
compute e
- It is important to
compute 14 remove the seed
compute 15 syntax when multiple
16 generations of the
d"c;fmpute 1; code are conducted.
If n very run of th
compute 19 om data generation parallel anal coget:’v(:illegrloglucg t;ee
compute 20 rav \ ata set
compute 2 pute randtype = 1. same eigenvalues.
compute 22 | End of user specifications. **++ssssassrss
loop L ll|le2—» |
ramnuta b.d Rl



https://people.ok.ubc.ca/brioconn/nfactors/rawpar.sps
https://people.ok.ubc.ca/brioconn/nfactors/rawpar.sps

B TABLE 9.5
SPSS Syntax for Generating Parallel Analysis

set mxloops=9000 printback=off width=80 seed = 1953125.

matrix.

* Enter the name/location of the data file for analyses after "FILE =";
This tells SPSS to use the SPSS

data set that is currently open

active SPSS data file; Alternatively, enter the name/location and to generate the parallel
analysis only on variables

If you specify "FILE = *", then the program will read the current,

of a previously saved SPSS data file instead of "*";

NUMHOME through
you can use the "/ VAR =" subcommand after "/ missing=omit" READYTOLEARN.

subcommand to select variables for the analyses.

| GET raw / FILE = * / missing=omit / VAR = NUMHOME to READYTOLEARN.

* Enter the desired number of parallel data sets here.

| compute ndatsets = 100. This tells SPSS to generate 100
parallel datasets (100 is the default
and is a good starting place).

* Enter the desired percentile here.

| compute percent = 95.

* Enter either

. th .
1 for principal components analysis, or This tells SPSS to compute the 95 percentile. ]

2 for principal axis/common factor analysis.

axis/common factor analysis.

compute kind = 2 . This tells SPSS to compute principal
* Enter either

1 for normally distributed random data generation parallel analysis, or

2 for permutations of the raw data set.

compute randtype = 1. This tells SPSS to generate normally
distributed random data.

Kok ok Kok Kok Kok Kok kkkkkkk End Of user SpeCiﬁcationS. Kok ok KKk Kk ok kok kok sk k ok k k

compute ncases = nrow(raw).

compute nvars = ncol(raw).

* principal components analysis & random normal data generation.

do if (kind = 1 and randtype = 1).

compute nml = 1 / (ncases-1).
compute vcv = nml * (sscp(raw) - ((t(csum(raw))*csum(raw))/ncases)).
compute d = inv(mdiag(sgrt(diag(vcv)))).

compute realeval = eval(d * vcv * d).



M TABLE 9.5 (continued)
SPSS Syntax for Generating Parallel Analysis

compute evals = make (nvars,ndatsets,-9999).
loop #nds = 1 to ndatsets.
compute x = sqgrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &*

cos (6.283185 * uniform(ncases,nvars) ).

compute vcv = nml * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).
compute d = inv(mdiag(sqgrt(diag(vcv)))).

compute evals(:,#nds) = eval(d * vcv * d).

end loop.

end if.

* principal components analysis & raw data permutation.

do if (kind = 1 and randtype = 2).

compute nml = 1 / (ncases-1).

compute vcv = nml * (sscp(raw) - ((t(csum(raw))*csum(raw))/ncases)).
compute d = inv(mdiag(sgrt(diag(vcv)))).

compute realeval = eval(d * vcv * d).

compute evals = make (nvars,ndatsets,-9999).

loop #nds = 1 to ndatsets.

compute x = raw.

loop #c = 1 to nvars.

loop #r = 1 to (ncases -1).

compute k = trunc( (ncases - #r + 1) * uniform(l,1) + 1 ) + #r - 1.
compute d = x(#r,#c).

compute x (#r,#c) = x(k,#c).

compute x (k,#c) = d.

end loop.

end loop.

compute vcv = nml * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).



M TABLE 9.5 (continued)
SPSS Syntax for Generating Parallel Analysis

compute d = inv(mdiag(sqgrt(diag(vcv)))).
compute evals(:,#nds) = eval(d * vcv * d).
end loop.

end 1if.

* PAF/common factor analysis & random normal data generation.

do if (kind = 2 and randtype = 1).

compute nml 1 / (ncases-1).

compute vcv = nml * (sscp(raw) - ((t(csum(raw))*csum(raw))/ncases)).
compute d = inv(mdiag(sqgrt(diag(vcv)))).

compute cr = (d * vecv * d).

compute smc = 1 - (1 &/ diag(inv(cr)) ).

call setdiag(cr,smc) .

compute realeval = eval(cr).
compute evals = make (nvars,ndatsets,-9999).
compute nml = 1 / (ncases-1).

loop #nds = 1 to ndatsets.

compute x = sqgrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &*

c0s(6.283185 * uniform(ncases,nvars) ).

compute vcv = nml * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).
compute d = inv(mdiag(sgrt(diag(vcv)))).

compute r = d * vcv * d.

compute smc = 1 - (1 &/ diag(inv(r)) ).

call setdiag(r,smc).
compute evals(:,#nds) = eval(r).
end loop.

end 1if.

* PAF/common factor analysis & raw data permutation.

do if (kind = 2 and randtype = 2).

compute nml 1 / (ncases-1).
compute vcv = nml * (sscp(raw) - ((t(csum(raw))*csum(raw))/ncases)).
compute d = inv(mdiag(sgrt(diag(vcv)))) .

compute cr = (d * vcv * d).



M TABLE 9.5 (continued)
SPSS Syntax for Generating Parallel Analysis

compute smc = 1 - (1 &/ diag(inv(cr)) ).
call setdiag(cr, smc).

compute realeval = eval(cr).

compute evals = make (nvars,ndatsets,-9999).
compute nml = 1 / (ncases-1).

loop #nds 1l to ndatsets.

compute x raw.
loop #c = 1 to nvars.

loop #r = 1 to (ncases -1).

compute k = trunc( (ncases - #r + 1) * uniform(l,1) + 1 ) + #r - 1.
compute d = x(#r,#c).

compute x (#r,#c) = x(k,#c).

compute x (k,#c) = d.

end loop.

end loop.

compute vcv = nml * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).
compute d = inv(mdiag(sqgrt(diag(vcv)))).

compute r d * vev * d.

compute smc = 1 - (1 &/ diag(inv(r)) ).
call setdiag(r,smc) .

compute evals(:,#nds) = eval(r).

end loop.

end if.

* identifying the eigenvalues corresponding to the desired percentile.

compute num = rnd((percent*ndatsets)/100).

compute results = { t(l:nvars), realeval, t(l:nvars), t(l:nvars) }.
loop #root = 1 to nvars.
compute ranks = rnkorder (evals (#root,:)).

loop #col = 1 to ndatsets.

do if (ranks(1l,#col) = num).
compute results (#root,4) = evals (#root, #col).
break.

end if.
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end loop.
end loop.

compute results(:,3) = rsum(evals) / ndatsets.

print /title="PARALLEL ANALYSIS:".
do if (kind = 1 and randtype = 1).
print /title="Principal Components & Random Normal Data Generation".
else if (kind = 1 and randtype = 2).
print /title="Principal Components & Raw Data Permutation".
else if (kind = 2 and randtype = 1).
print /title="PAF/Common Factor Analysis & Random Normal Data Generation".
else if (kind = 2 and randtype = 2).
print /title="PAF/Common Factor Analysis & Raw Data Permutation".
end if.
compute specifs = {ncases; nvars; ndatsets; percent}.
print specifs /title="Specifications for this Run:"
/rlabels="Ncases" "Nvars" "Ndatsets" "Percent".
print results
/title="Raw Data Eigenvalues, & Mean & Percentile Random Data Eigenvalues"

/clabels="Root" "Raw Data" "Means" "Prcntyle" /format "fl2.6".

do if (kind = 2).

print / space = 1.

print /title="Warning: Parallel analyses of adjusted correlation matrices".
print /title="eg, with SMCs on the diagonal, tend to indicate more factors".

print /title="than warranted (Buja, A., & Eyuboglu, N., 1992, Remarks on
parallel”.

print /title="analysis. Multivariate Behavioral Research, 27, 509-540.).".
print /title="The eigenvalues for trivial, negligible factors in the real".
print /title="data commonly surpass corresponding random data eigenvalues".
print /title="for the same roots. The eigenvalues from parallel analyses".
print /title="can be used to determine the real data eigenvalues that are".
print /title="beyond chance, but additional procedures should then be used".
print /title="to trim trivial factors.".

print / space = 2.
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B TABLE 9.5 (continued)
SPSS Syntax for Generating Parallel Analysis

print /title="Principal components eigenvalues are often used to determine".
print /title="the number of common factors. This is the default in most".
print /title="statistical software packages, and it is the primary practice".
print /title="in the literature. It is also the method used by many factor".
print /title="analysis experts, including Cattell, who often examined".

print /title="principal components eigenvalues in his scree plots to
determine".

print /title="the number of common factors. But others believe this common".
print /title="practice is wrong. Principal components eigenvalues are based".
print /title="on all of the variance in correlation matrices, including both".
print /title="the variance that is shared among variables and the variances".
print /title="that are unique to the variables. In contrast, principal".

print /title="axis eigenvalues are based solely on the shared variance".

print /title="among the variables. The two procedures are qualitatively".
print /title="different. Some therefore claim that the eigenvalues from one".
print /title="extraction method should not be used to determine".

print /title="the number of factors for the other extraction method.".

print /title="The issue remains neglected and unsettled.".

end if.

compute root = results(:,1).

compute rawdata = results(:,2).

compute percntyl = results(:,4).

save results /outfile= 'screedata.sav' / var=root rawdata means percntyl

end matrix.

Step 3. Now that the syntax is created (see PA_PIAAC_n191.sps), run the program.
For this data, we first generate 100 datasets using normally distributed data. Then we

generate 1000 datasets using permutations of the raw data.

Interpreting the PA output. Annotated results are presented in Tables 9.6 and 9.7.
More specifically, in Table 9.6 the results were generated using 100 datasets (compute
ndatsets = 100.) with normally distributed random data (compute randtype = 1.).
Table 9.7 results were generated using 1000 datasets (compute ndatsets = 1000.)
with normally distributed random data (compute randtype = 2.). In both cases, we

arrive at the same conclusion—two factors should be retained.



M TABLE 9.6

SPSS Parallel Analysis Results for the Exploratory Factor Analysis Example: 100 Datasets with
Normally Distributed Random Data

Run MATRIX procedure:
PARALLEL ANALYSIS:

PAF/Common Factor Analysis & Random Normal Data Generation

Specifications for this Run: ! 10 determine the number of factors to retain, compare the

Ncases 191 eigenvalues derived from the observed raw data to the

Nvars 8 eigenvalues derived from the parallel analysis computation.
Ndatsets 100 When the th eigenvalue from the observed data is greater than
Percent 95

parallel analysis, then those factors are retained.

Here, we see the first two ‘raw data’ eigenvalues are greater
than the random data mean and percentile eigenvalues
indicating that two fact rs should be retained.

[Ty Py

the th eigenvalue from the random or permutated data in the :

Raw Data Eigenvalues, & Mean|& Percentile Random Data Eige¢nvalues

Root ] Raw Dataj& | _ Means e Prcntylel
1.000000 1.613687 .359535 .472506
2.000000 [ 463109] .227939 .313412
3.000000 .041523 .132743 .200257
4.000000 .040669 .054752 .109795
5.000000 -.085385 -.014786 .029500
6.000000 -.088389 -.085607 -.037489
7.000000 -.193077 -.155585 -.107658
8.000000 -.256326 -.231419 -.171749

Warning: Parallel analyses of adjusted correlation matrices

eg, with SMCs on the diagonal, tend to indicate more factors

than warranted (Buja, A., & Eyuboglu, N., 1992, Remarks on parallel
analysis. Multivariate Behavioral Research, 27, 509-540.).

The eigenvalues for trivial, negligible factors in the real

data commonly surpass corresponding random data eigenvalues

for the same roots. The eigenvalues from parallel analyses

can be used to determine the real data eigenvalues that are

beyond chance, but additional procedures should then be used

to trim trivial factors.
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SPSS Parallel Analysis Results for the Exploratory Factor Analysis Example: 100 Datasets with
Normally Distributed Random Data

Principal components eigenvalues are often used to determine
the number of common factors. This is the default in most
statistical software packages, and it is the primary practice
in the literature. It is also the method used by many factor
analysis experts, including Cattell, who often examined
principal components eigenvalues in his scree plots to determine
the number of common factors. But others believe this common
practice is wrong. Principal components eigenvalues are based
on all of the variance in correlation matrices, including both
the variance that is shared among variables and the variances
that are unique to the variables. In contrast, principal

axis eigenvalues are based solely on the shared variance

among the variables. The two procedures are qualitatively
different. Some therefore claim that the eigenvalues from one
extraction method should not be used to determine

the number of factors for the other extraction method.

The issue remains neglected and unsettled.



M TABLE 9.7

SPSS Parallel Analysis Results for the Exploratory Factor Analysis Example: 1000 Datasets with

Permutations of the Raw Data

Run MATRIX procedure:
PARALLEL ANALYSIS:
PAF/Common Factor Analysis & Raw Data Permutation

Specifications for this Run:

Ncases 191

Nvars 8

Ndatsets 1000 FooTTTTTTTomTTmTTmmmmo oo oo o mm T TTTTTTTTToTmmmTeoos
Percent 95 To determine the number of factors to retain, compare the

eigenvalues derived from the observed raw data to the
eigenvalues derived from the parallel analysis computation.
When the th eigenvalue from the observed data is greater than
the th eigenvalue from the random or permutated data in the
parallel analysis, then those factors are retained.

Here, we see the first two ‘raw data’ eigenvalues are greater
than the permutated data mean and percentile eigenvalues
indicating that two factors should be retained.

Raw Data Eigenvalues, & Mearn & Percentile R

Root  [Raw Datad [ 7 Means
1.000000 1.613687 .361951
2.000000 . 463109 [ 237016
3.000000 .041523 .137709
4.000000 .040669 .057641
5.000000 -.085385 -.015422
6.000000 -.088389 -.085530
7.000000 -.193077 -.157236
8.000000 -.256326 -.237790

Warning: Parallel analyses of adjusted correlation matrices

eg, with SMCs on the diagonal, tend to indicate more factors

than warranted (Buja, A., & Eyuboglu, N., 1992, Remarks on parallel
analysis. Multivariate Behavioral Research, 27, 509-540.).

The eigenvalues for trivial, negligible factors in the real

data commonly surpass corresponding random data eigenvalues

for the same roots. The eigenvalues from parallel analyses

can be used to determine the real data eigenvalues that are

beyond chance, but additional procedures should then be used

to trim trivial factors.

Principal components eigenvalues are often used to determine
the number of common factors. This is the default in most

statistical software packages, and it is the primary practice
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M TABLE 9.7 (continued)

SPSS Parallel Analysis Results for the Exploratory Factor Analysis Example: 1000 Datasets with
Permutations of the Raw Data

in the literature. It is also the method used by many factor
analysis experts, including Cattell, who often examined
principal components eigenvalues in his scree plots to determine
the number of common factors. But others believe this common
practice is wrong. Principal components eigenvalues are based
on all of the variance in correlation matrices, including both
the variance that is shared among variables and the variances
that are unique to the variables. In contrast, principal

axis eigenvalues are based solely on the shared variance

among the variables. The two procedures are qualitatively
different. Some therefore claim that the eigenvalues from one
extraction method should not be used to determine

the number of factors for the other extraction method.

The issue remains neglected and unsettled.

9.3.2 Computing EFA With Ordinal Data Using SPSS

Next we consider an SPSS add-on, categorical principal components analysis (CAT-
PCA), for conducting exploratory factor analysis in the case where our data is ordinal.
I felt it critically important to provide this illustration in the textbook for two reasons:
(1) there is an abundance of data collected and secondary data available that is ordinal
in scale—specifically Likert items that measure attitude, perceptions, etc.—as well
as nominal (which can also be handled with CATPCA); and (2) yet few resources
are available that transparently help researchers select and use an appropriate EFA
procedure and thereby avoid the pitfall of applying conventional EFA techniques to
data for which it is really not appropriate. As an optimal scaling approach, nonlinear
relationships between categorical variables can be modeled within CATPCA via opti-
mal quantification in a specified dimension. Unfortunately, CATPCA is only available
as an add-on with SPSS. Should you be renting a copy of SPSS, you likely have it.
If you are accessing SPSS from an institution that purchases a finite number of SPSS
licenses, you may or may not have it.

Before we conduct the analysis, let us talk about the data. The data we are using is the
2010 Survey of Doctorate Recipients (SDR, http://www.nsf.gov/statistics/srvydoctor
atework/), available through the National Science Foundation (NSF) (2010). Thank
you to NSF for making this data publicly available. This is only one of many secondary
data sources available through NSF as well as other federal and nonfederal agencies,


http://www.nsf.gov/statistics/srvydoctoratework/
http://www.nsf.gov/statistics/srvydoctoratework/
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and I encourage you to explore these extremely rich resources (particularly for multi-
variate research) for your own research.

First conducted in 1973, the SDR is a “longitudinal biennial survey that provides
demographic and career history information about individuals with a research doctoral
degree in a science, health, or engineering (SHE) field from a U.S. academic institu-
tion. The survey follows a sample of individuals with SHE doctorates throughout their
careers from the year of their degree until age 76 . . . Results are used to make deci-
sions related to the educational and occupational achievements and career movements
of the nation’s doctoral scientists and engineers” (see http://www.nsf.gov/statistics/
srvydoctoratework/). It is important to note that the SDR is a complex sample (i.e.,
not a simple random sample). More specifically, it employs a stratified probability
sampling design. As you will see in the dataset, the very last variable is a weight var-
iable. When this weight is applied to the analysis, the results are adjusted for unequal
selection probabilities and nonresponse (which also includes respondents who could
not be located or whose eligibility was unknown) and aligned with poststratification
(http://www.nsf.gov/statistics/srvydoctoratework/). The end results are then represent-
ative of the intended population. As stated previously, the purpose of the text is not to
serve as a primer for understanding complex samples, and thus readers interested in
learning more about complex survey designs are referred to resources noted earlier in
the chapter.

Now, let’s review the data. We are using the SDR2010_POSTDOC .sav file. This data
file has been delimited to include only individuals who completed the SDR in 2010
who were employed in a post-doctoral position during the week they responded to the
survey (n = 1080). The size of this sample is more than sufficient to generate EFA but
at the same time small enough to work with for readers who may be using a version
of SPSS that limits the number of cases to 1,500. (Note: The complete SDR data file,
which includes 31,362 cases, is available from the textbook’s companion website and
is titled SDR2010_NSF.sav.)

You’ll notice that in both the post-doc (SDR2010 POSTDOC.sav) and full data file
(SDR2010 NSF.sav) there is quite a bit of recoding that will need to be performed in
order to get the data in shape for analysis. This includes defining the missing values,
recoding the string variables to numeric, and where applicable, reverse coding. I've
taken the liberty to perform this data cleaning for the variables with which we’ll be
working; however, the remaining variables in the data file have been left as is so that
you may practice your data cleaning skills in working with ‘real data.’

Let’s look at the data. The first variable in our dataset was the variable used to delimit
the cases to only respondents who were employed in post-doctoral positions during the
week of the survey. The next nine variables are those variables with which we will be
analyzing for the EFA. Each row in the data set still represents one individual. As seen
in the screenshot below, the SPSS data is in the form of multiple columns that repre-
sent the variables on which the respondents were measured. For the EFA illustration,
we will work with the nine ordinal satisfaction measures.


http://www.nsf.gov/statistics/srvydoctoratework/
http://www.nsf.gov/statistics/srvydoctoratework/
http://www.nsf.gov/statistics/srvydoctoratework/
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Reviewing the annotated SDR questionnaire available from NSF (see screenshot of
questionnaire), this is a question set responding to the item, “Thinking about your
principal job held during the week of October 1, please rate your satisfaction with that

job’s . .

.” The components of the job to which they responded included (1) salary,

(2) benefits, (3) job security, (4) job location, (5) opportunities for advancement, (6)
intellectual challenge, (7) level of responsibility, (8) degree of independence, and (9)

contribution to society.

A34. Thinking about your principal job held during the
week of October 1, please rate your satisfaction

a A W N

© 00 ~N O

with that job’s...

Mark one answer for each item.

Very

'

Salary .....oeoeeeeeeeeeeeeeeene 1]
Benefits it sm ety |
Job security ...................1[]
Job location .................... |
Opportunities for

advancement.................. |
Intellectual challenge....... 1]
Level of responsibility ..... 1[]

Degree of independence 1[]

Contribution to society.... 1

These are the column header names for the
original variables in the SDR. The recoded
variables which we will use include an
underscore to separate SAT from the item
descriptor (e.g., SAT_SAL).

Somewhat Somewhat
satisfied  satisfied dissatisfied dissatisfied

y

2[]
2[]
2[]
2[]

2]
2[]

2

2[]

3

3

3

3

3

3

3

3

Very

Ve

0 | [SATSAL
O
O |
0 | [SATLoC
O | [SATADV"

SATCAHL®
O | [SATRESP"
0 | [SATIND?
O | [SATsoc
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Step 1. To conduct categorical principal components analysis, go to “Analyze” in the
top pull-down menu, then select “Dimension Reduction,” and then select “Optimal
Scaling.” Again, please remember that if you do not have this SPSS add-on, you will
not see an option for “"Optimal Scaling.” Following the screenshot below (CATPCA:
Step 1) produces the “Factor Analysis” dialog box.

)
File  Edit View Data A Analyze  DirectMarketing ~ Graphs  Ulilities  Ad C ATPC A
: E‘% i 7 Reports 3 )
SHHEHE O = -
e =, v Descriptive Statistics » Step 1
[ | Tables » 15
| AcAaD PosTDOC | SA  compare Means » HAL | sATND | sATLC
1 1.00 General Linear Model » 4.00 4.00
2 1.00 Generalized Linear Models > 4.00 4.00
3 1.00 Mixed Models B 300 3.00
4 1.00 4.00 4.00
| Correlate 3
2 1.00 Regression > 4.00 4.00
6 1.00 : 4.00 3.00
Loglinear »
| Li il Neural Networks 4 1.00 1.00
1. . 3.00 400
Classify [
9 1 4 00 A4 NN
10 1l B — Dimension Reduction 4 A\ Eactor...
11 1.00 e b [ Correspondence An
| 1.00 MNonparametric Tests 4 13 Optimal Scaling.
42 4 nn Forecasging s I 2nn 2 nn

Step 2. Select the radio button for "Some variable(s) are not multiple nominal” (had
all the variables been nominal, we would have selected the first option) and “one set”
(see screenshot CATPCA: Step 2).

(@ Optimal Scaling CATPCA:
rOptimal Scaling Level——————— Step 2

©) All variables are multiple nominal

'''''

*, @ Gne set

Multiple sets

rSelected Analysis
Multiple Correspondence Analysis
Categorical Principal Components

Monlinear Canonical Correlation
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Step 3. Click the nine satisfaction measures and move into the “Analysis Variables”
box by clicking the arrow button (see screenshot CATPCA: Step 3).

@ Categorical Principal Ccmpone_ny ‘ " - - S S CATPCA:

== Step 3

& E_JOB_EMPLR_ACAD_POSITION_P...[ < \T_ADV(1 Spline ordinal
&4 E_JOB_EMPLR_ACAD_POSITION_A.. SAT_BEN(1 Spline ordinal 2 2

&4 E_JOB_EMPLR_ACAD_POSITION_A... SAT_CHAL(1 Spline ordinal 2 2)
&a E_JOB_EMPLR_ACAD_POSITION_... SAT_IND(1 Spline ordinal 2 2)
&a E_JOB_EMPLR_ACAD_POSITION_.. .E SAT_LOC(1 Spline ordinal 2 2) -
&a E_JOB_EMPLR_ACAD_POSITION_P, SAT_RESP(1 Spline ordinal 2 2)
&4 E_JOB_EMPLR_ACAD_POSIT|gM® SAT_SAL(1 Spline ordinal 22) Plots
p TON_T.. SAT_SEC(1 Spline ordinal 2 2] m 1]
Select the nine EAS_A T_SOC(1 Spline ordingy@#) — |
satisfaction _REAS._B.. s e =t
0 . 8 3
measures from the PSSISTANCE... et 2 !
T 0ading..
list on the left and |-L-REAS_C.. Supplementary Variables: — |
use the arrow to ffi?R:TE E I
move them to the | .= 2" "
N - i o [-L_REAS.|
'Analysis Var@bles LL_REAS LI, "
box on the right.  [LL_Rreas o.. -» |
@& ED-REF—WR_ENROLL_IND_RE.. |
i

f &a N_ED_REF_WK_ENROLL_REAS_A...

&h F_10B WRK_ACTIVITY_PRIM_SEC... The default number of dimensions is
&4 F_JOB_WRK_ACTIVITY_PRIM_SEC.. T

& F_JOB_WRK_ACTIVITY_PRIM_SEC *2." We will leave this for now, but
&a F_JOB_WRK_ACTIVITY_PRIM_SEC... Labeling Variables: computing solutions with more and

& F_JOB_WRK_ACTIVITY_PRIM_SEC less is recommended in order to

M| | & F_JOB_WRK_ACTIVITY_PRIM_SEC.. determine the best fitting solution.
&4 F_JOB_WRK_ACTIVITY_PRIM_SEC...
& U_DEM_AGE_PUB [AGEF] -
& J_ED_BA_DEGREE_AWARD_YR20... "
&4 U_DEM_BIRTH_PLACE_REGION_U... |
& W_DEM_CHILDREN_IND_12_18[C...
&4 W_DEM_CHILDREN_IND_19 [CH19... |_|
£ W NEM CcHILNREN INN 2 Kicko [X]]  Dimensions in solution:

| (06 ) () o

Step 4. Click in “Define scale and weight” (displayed under the Analysis Variable box)
to change the optimal scaling level (see screenshot CATPCA: Step 4). The default is ‘spline
ordinal.” We will select the radio button for ‘ordinal.” Spline ordinal and ordinal optimal
scaling levels are similar in that they both preserve the order of the categories in the opti-
mally scaled variable. Ordinal optimal scaling results in a better fitting transformation than
spline ordinal but is less smooth. Click Continue to return to the main CATPCA page.

-
@ Categorical Principal Components: Define Sc... M

CATPCA:
Variable weight:
Step 4

rOptimal Scaling Level———
Spline ordinal
Spline nominal € Nominal
Multiple nominal Numeric

rSpline

Degree: |2 Interior knots

|,Conl_igue | Cancel Hel
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Step 5. From the CATPCA page (see screenshot CATPCA: Step 3), click on
Options to bring up the Options dialog box. We will leave all default selections as
is on this page (see screenshot CATPCA: Step 5). In terms of the Normalization
Method, the default selection is Variable Principal. This method optimizes the
relationship between variables and is an appropriate selection if the correlation
between variables is your primary interest. Click Continue to return to the main
CATPCA page.

——

Categorical Principal Components: Options CATPCA:

Step 5

rSupplementary Objects

Mormalization Method

@ Range of casesi

First: i
i I—, Custom value:
Last:
I:l ~Criteria
Single case: :
I Convergence: .00001
| Maximum iterations:

Add

=
o
~N
w
o
(-]
=
-
j=}
=
1R

o
-----

rLabel Plots By

Change
@ Variable labels orvalue labels

Remove
=L Limit for label length:

Variable names or values

rFlot Dimensions

@ Display all dimensions in the solution
i Restrict the number of dimensions

‘ Lowest dimension:
Highest dimension:
rConfiguration

MNone 2 | Eile

[continue || cancel || Hep |

Step 6. From the CATPCA page (see screenshot CATPCA: Step 3), click on Out-
put to bring up the Output dialog box (see screenshot CATPCA: Step 6). Object
scores and Component loadings should already be selected, and we will keep those
selected. Place a checkmark for the remaining tables including Iteration history,
Correlations of original variables, Correlations of transformed variables, and Var-
iance accounted for. Click Continue to return to the main CATPCA page. Move all
the satisfaction variables from the Quantified Variables list to the Category Quan-
tifications box by clicking the arrow in the middle. Repeat this process to move the
variables to the Descriptive Statistics box. Click Continue to return to the main
CATPCA page.
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=
@ Categorical Principal Components: Output‘ CATPCA:
Tables———— . Step 6

7| __ ject scores Cf'c_[relations of original variables

| Cémponentloadiné's [ Cdrrglations of transformed variables
Epération history

*.[w| Variance accounted

|| Quantified Variables: ategory Quantifications:
SAT_ADV

|| [SAT_BEN
SAT_CHAL
SAT_IND #escriptive Statistics:
SAT_LOC SAT_ADV =
SAT_RESP SAT BEN
SAT_SAL Mg ~uia 7
SAT_SEC / Object SEBTE=OTTons -

i SAT_SOC Include Categories Of:

Select the 9 satisfaction ble#
measures from the list on the
left and use the arrow to

move them to the “Category Label Object Scores By:
Quantifications” box on the |:|
right. Repeat this process to o

move the variables to the

“Descriptive Statistics” box.
P [ |con§gu5| Cancel Help
|

[S —=

Step 7. From the CATPCA page (see screenshot CATPCA: Step 3), click on Object
(listed under Plots in the right navigational menu) to bring up the Object and Variable
Plots dialog box (see screenshot CATPCA: Step 7). Object points should already be
selected, and we will keep that option selected. We will place a checkmark for Objects
and variables (biplot) with variable coordinates Loadings. We will keep the default
options selected for Biplot and Triplot Variables and Label Objects. Click Continue to
return to the main CATPCA page.

-
8 Categorical Princi ts: Object and Variable Plot: .
ategorical PnnclpaLComponen Jadicl 7anabe lots CATPCA:

[Plot Step 7

Variable coordinates:
I Objects, loadings, and «

rBiplot and Triplot Variable

"+© Centroids

Available Selected:
Include: SAT_ADV [=]
|| | @ Allvariables SAT_BEN
|| | © selected variables | =4T-CHAL
[ SAT_IND
SAT_LOC -
SAT_RESP
SAT_SAL
SAT_SEC E
t
\| rLabel Object
Available
Label by: SAT_AD
® Case number SAT_BEN -~
Variable SAT_CHAL
i SAT_IND
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Step 8. From the CATPCA page (see screenshot CATPCA: Step 3), click on Loading
(listed under Plots in the right navigational menu) to bring up the Loading Plots dialog
box (see screenshot CATPCA: Step 8). Display component loadings should already be
selected, and we will keep that option selected. We will place a checkmark for Include
Centroids. Click Continue to return to the main CATPCA page.

"B Categorical Principalico : Loading Pl
@ ategorical rincipallC mponents: ing Plots CATPCA:

0 “ﬁgD‘:splay component loadings Step 8

“*=1"bading Variables

Available Selected

Include:
@ All variables
Selected variables

Available

Include:
® All variables
Selected variables

| (gontinue) (_cancel J(_top J

Step 9. From the CATPCA page (see screenshot CATPCA: Step 3), click ‘paste’ to
open the syntax created from the commands just generated (see screenshot CATPCA:

r@ *Syntax2 - IBM SPSS Statistics Syntax Editor - ) Y - H-@ CATPCA:
Step 9

File Edit View Data Transform Analyze DirectMarketing Graphs Utilites Add-ons Run _ Tools Window Hel

SFHE =~ ¥
. . - There is an unnecessary ‘0’ in the

Py print command syntax that will
prevent the original variable
correlation matrix from printing to
your output. When the ‘O’ is
removed, the syntax will automatically
change to red.

1
2 0|CATPCA VARIABLEY
3 JANALYSIS=SAT_4
4 SAT_IND(WEIGHT:
5 SAT_SAL(WEIGHT=]
6
7
8

/MISSING=SAT_ADV
SAT_IND(PASSIVE,
SAT_SAL(PASSIVE, I\

2l /DIMENSION=2
10 /NORMALIZATION=VPRINCIPAL
" /MAXITER=100

12 || /cRMITER=.00001
13 || /PRINT=CORR DESgg
14 HISTORY LOADI
15 SAT_SOC) VAF
16 || /PLOT=BIPLOT(LOADING) (20) OBJECT (20) CATEGORY(SAT_ADV SAT_BEN SAT_CHAL SAT_IND SAT_LOC SAT_RESP
17D  SAT_SAL SAT_SEC SAT_SOC ) (20) LOADING((CENTRY)) (20|

& BEN SAT_CHAL SAT_IND SAT_LOC SAT_RESP SAT_SAL SAT_SEC SAT_SOC)
ANT(SAT_ADV SAT_BEN SAT_CHAL SAT_IND SAT_LOC SAT_RESP SAT_SAL SAT_SEC

e
|IBM SPSS Statistics Processoris ready| |  |Unicode:ON [in 17 Col 57 [NUM |

L = = =
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Step 9). In some versions of SPSS, an error occurs in the print command line in speci-
fying to print the original variable correlation matrix such that an ‘O’ is included rather
than a space. If this error occurs in your syntax, remove the ‘O’ and then run the syntax
to generate the output.

When the erroneous ‘O’ is removed (you must manually do this using your delete or
backspace key), ‘OBJECT’ and ‘CORR’ will appear in red, indicating that the original

variable correlation matrix will be printed in the output.

Interpreting the CATPCA output. Annotated results are presented in Table 9.8.

M TABLE 9.8
SPSS Results for the Categorical Principal Components Analysis Example

Credit

CATPCA

Version 1.1

by

Data Theory Scaling System Group (DTSS)
Faculty of Social and Behavioral Sciences

Leiden University, The Netherlands

Descriptive Statistics

Case Processing Summary

Valid Active Cases 1080
Active Cases with Missing Values 0
Supplementary Cases 0
Total 1080
Cases Used in Analysis 1080

For illustrative purposes, only one descriptive
table is presented. However, the output includes

F_JOB_SATISFACTION_ADVANCEMENT? -

1 :
' 1
Frequenc ! H
LT i descriptive stats associated with each variable. E
Valid  Very dissatisfied 151 ' !
s hat dissatisfied 310 E This table presents the frequencies for each !
omewhat dissatistie ' category of the variables included in the model.
Somewhat satisfied® 414 b e e e e e e l

Very satisfied 205

Total 1080

a. Optimal Scaling Level: Ordinal.
b. Mode.



B TABLE 9.8 (continued)
SPSS Results for the Categorical Principal Components Analysis Example

Iteration History
— -

a. lteration 0 displays the statistics of the solution with all variables, except

level Multiple Nominal, treated as numerical.

b. The iteration process stopped because the convergence test value was

Model Summary «— |

better solution with CATPCA (which takes
the ordinal measurement scale into account
in the modeling) as compared to the

i beginning with iteration 1) reflects a slightly
E conventional PCA.

:—Vari_a_nce Accounted _For _ 2 Loss
----------- Restriction of
\ Centroid to
Centroid Vector
Iteration Number Total Increase Total Coordinates Coordinates
4.760364 .000005 13.193188 .046447
1 4.777268 .016904 13.193188 .029544
2 4.787877 .010609 13.182787 .029335
3 4.790623 .002746 13.180107 .029270
4 4.791586 .000962 13.179203 .029212
5 4.792009 .000423 13.178830 .029161
6 4.792228 .000219 13.178646 .029126
7 4.792353 .000126 13.207647 13.178540 .029107
8 4.792430 :000077|  13.207570 Eigenvalues ('variance accounted for’) for |
9 4.792480 .000049 13.207520 each iteration are presented. ‘Iteration 0° |
10 4792512 000033|  13.207488 represents the solution that would have i
1 4792534 1000022 13.207466 pee_n evidenced from a coqvef_m'ana/ i
principal components analysis (i.e., not '
12 4.792549 -000015 13.207451 taking into consideration the measurement i
13 4.792559 .000010 13.207441 scale of the variables). The larger i
14° 4.792566 .000007 13.207434 eigenvalue for the CATPCA solution (4.77, i
i
i
i
i
i
i
i
1
i
i
i
'

Cronbach’s alpha is a measure of internal

E consistency, and this value is provided for
1 each dimension (i.e., factor; labeled ‘1" and
*2") as well as the total which represents the

. - Variance Accounted For
(| d Cronbach‘s\ Total LTI =~
Dimension " ‘*~~--f_\_lpb.g._——"' (Eigenvalue) '\‘jg_c_zf Varianeg_,
1 793 3.388 37.643
2 .324 1.405 15.608
Total .890° 4.793 53.251

variance'’ is presented for each factor and
for the combination of factors (i.e., total).
Both factors account for 53% of the
variance in the optimally scaled items.

a. Total Cronbach's Alpha is based on the total Eigenvalue.

|
combination of all factors. The ‘% of E




B TABLE 9.8 (continued)
SPSS Results for the Categorical Principal Components Analysis Example

For illustrative purposes, only

i
i
|
Quantifications E one descriptive table is
: presented. However, the
A/i output includes descriptive
Table ! stats associated with each
F_JOB_SATISFACTION_ADVANCEMENT® il
’:'Centroid Coordinates :‘i Vector Coordinates _J{
Dimension Dimension
Category Frequency Quantification 1 2 1 2
Very dissatisfied 151 -1.920 -1.232 -.387 -1.254 -291
Somewhat dissatisfied 310 -478 -317 -.053 -312 -073
Somewhat satisfied 414 .371 222 143 242 .056
Very satisfied 205 1.389 .938 077 .907 211

Variable Principal Normalization.

a. Optimal Scaling Level: Ordinal.

The correlation matrix reflects
coefficients after optimal
scaling has been performed.
These coefficients are those

‘Centroid coordinates’ reflect the average of all object scores for
cases for the respective category on each factor (labeled

category when the categories are represented by a straight line
between factor 1 (X axis) and factor 2 (Y axis) in a scatterplot.

imputed data during the
CATPCA procedure, these
values would reflect
correlations of imputed values.

____________________________ |
Correlations Transformed Variables /

i ‘dimension’). Vector coordinates’ are the coordinates for each | i used in the CATPCA. If you E

F_JOB_SATIS F_JOB_SATIS
F_JOB_SATIS | F_JOB_SATIS | F_JOB_SATIS | FACTION_IN | F_JOB_SATIS | FACTION_RE | F_JOB_SATIS |F_JOB_SATIS | F_JOB_SATIS
FACTION_AD | FACTION_BE | FACTION_CH | DEPENDENC | FACTION_LO | SPONSIBILIT | FACTION_SA | FACTION_SE | FACTION_SO
VANCEMENT NEFITS ALLENGE E CATION Y LARY CURITY CIETY
F_JOB_SATISFACTION_
ADVANGEMENT 1.000 163 362 316 227 392 309 426 333
F_JOB_SATISFACTION_
BENEFTTS 163 1.000 077 153 157 149 428 263 100
F_JOB_SATISFACTION_
GHALLENGE 362 077 1.000 502 220 815 109 232 495
F_JOB_SATISFACTION_|
NDEPENDENCE 316 153 502 1.000 207 622 183 310 434
F_JOB_SATISFACTION_
LOCATION 227 157 220 207 1.000 210 18 195 a7
F_JOB_SATISFACTION_
RESPONSIBILITY 392 149 615 622 210 1.000 21 348 498
F_JOB_SATISFACTION_
SALARY 309 428 109 183 18 21 1.000 272 093
F_JOB_SATISFACTION_
SECURITY 426 263 232 310 195 348 272 1.000 241
F_JOB_SATISFACTION_
SOCIETY 333 100 495 434 177 498 093 241 1.000
Dimension 1 2 3 4 5 6 7 8 9
Eigenvalue 3.388 1.405 887 808 641 600 489 448 334




B TABLE 9.8 (continued)
SPSS Results for the Categorical Principal Components Analysis Example

Objects
Object Scores
Dimension
Case Number 1 2
1 .906 -.667
2 1.347 489
3 =711 .148
4 1.150 .379
5 971 -213
6 1.108 .334
7 -2.188 4974
8 136 .651
9 1.263 1.367
10 .927 613
1080 1.330 .986

Variable Principal Normalization.

Component Loadings

Component Loadings

Dimension
1 2
F_JOB_SATISFACTION_AD { 653 ;‘/ 15
VANCEMENT S
F_JOB_SATISFACTION_BE 7
359 L 684
NEFITS .
F_JOB_SATISFACTION_CH /723 574
ALLENGE [
F_JOB_SATISFACTION_IND i !
{o735|t -225
EPENDENCE i 1
F_JOB_SATISFACTION_LO : !
i 404 | 104
CATION ! i
F_JOB_SATISFACTION_RE \ /
\.804 -248
SPONSIBILITY N
F_JOB_SATISFACTION_SA Y
- - 422| 1 670
LARY
F_JOB_SATISFACTION_SE | 587‘ \ 310
CURITY . 4
F_JOB_SATISFACTION_SO | % /
N 662[/  -326
CIETY o

Variable Principal Normalization.

For illustrative purposes, only a
portion of the output is presented.

The object scores represent the
coordinates associated with the
respective case for each factor. Thus,
there will be as many cases listed in

the table as your sample size.

The component loadings scatterplot
graphs the coordinates for each
variable on each factor, allowing us
to see how the variables relate to
each other as well as the factors.
Variables that lump together suggest
distinguishable factors. In this case,
we see that seven of the variables
coalesce together on factor 1 and

only two on factor 2.



B TABLE 9.8 (continued)
SPSS Results for the Categorical Principal Components Analysis Example

Biplot
O Component Loadings
(adjusted to scale of
objects)
O Objects
6 — Component Loadings
7 (adjusted to scale of
objects)
902
4 [©) s 918 F_JOB_SATISFACTION_B
~ 304 goa 2% 7
c O 728 984Oﬁ
.% 2- ATISFACTION_S
5 ” SATISFACTION_A
E 358 ) O 20d!
o 0 _|
o ﬁ JOB_SATISFACTION_R
ASUON B0
o FABTfoN"SQ
- & 2l‘-)_JOB_SATISFACTION_C
4151
189
—4- f 1007450 774

-5.0 -2.5 0.0 2.5 5.0
Dimension 1

Variable Principal Normalization

Finally, we get a scatterplot that you will see in color but is
presented in grayscale here. Each variable is black and each
case is green (grayscale here). Factor 1 is able to capture a
bit more of the variance among the variables and cases and

thus can explain the variance a bit better than factor 2 we

see the variables and cases to be more tightly grouped (-4
to 4 for factor 2 as compared to -5 to 5 for factor 1). This
suggests less variable variance captured.



M TABLE 9.8 (continued)
SPSS Results for the Categorical Principal Components Analysis Example

Component Loadings

0.757 F_JOB_SATISFACTION_B

F_JOB_SATISFACTION_S

0.50

F_JOB_SATISFACTION_S

F_JOB_SATISFACTION_A

Dimension 2
o
N
[6)]
1

F_JOB_SATISFACTION_L
0.00

F_JOB_SATISFACTION_I
—-0.25

F_JOB_SATISFACTION_S
F_JOB_SATISFACTION_C

T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Dimension 1

Variable Principal Normalization

The component loadings scatterplot graphs the coordinates for each i
variable on each factor, allowing us to see how the variables relate to |
each other as well as the factors. Variables that lump together suggest i

distinguishable factors. In this case, we see the variables vary :
substantially along dimension 2 (i.e., factor 2) but tend to fall within a i
more narrow range of dimension 1 (i.e., factor 1) (between about .40 and |
.80). Here we can see how the two variables with large loadings on factor i
2 are differentiating from those of factor 1. This may be where a decision |
is made to remove the two variables that appear to load on factor 2 and i
re-run. If the model improves without those items, there will be a clearer, |
tighter grouping of the variables on their respective factor(s). i

The lines from the centroid to each variable are eigenvectors and the
variable is at the eigenvalue for its vector. Thus the eigenvalue is a
distance point along an eigenvector. With conventional EFA, a rotation
strategy is applied to make interpretation easier. Here, we can imagine
rotation such that both dimensions are rotated counterclockwise 45
degrees. In doing so, the axis of each factor (or dimension) would be
going through a cloud of points (which represent the variables).



B TABLE 9.8 (continued)
SPSS Results for the Categorical Principal Components Analysis Example

Biplot
O Component Loadings
(adjusted to scale of
objects)
O Objects
6 — Component Loadings
7 (adjusted to scale of
objects)
902
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Variable Principal Normalization

Finally, we get a scatterplot that you will see in color but is
presented in grayscale here. Each variable is black and each
case is green (grayscale here). Factor 1 is able to capture a
bit more of the variance among the variables and cases and

thus can explain the variance a bit better than factor 2 we

see the variables and cases to be more tightly grouped (-4
to 4 for factor 2 as compared to -5 to 5 for factor 1). This
suggests less variable variance captured.
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9.4 DATA SCREENING

As you may recall, there were a number of assumptions associated with conventional
exploratory factor analysis. These included (a) independence, (b) linearity, (c) absence
of outliers (both univariate and multivariate), and (d) lack of extreme multicollinearity
and singularity. Although fixed values of X were discussed in assumptions, this is not
an assumption that will be tested, but is instead related to the use of the results (i.e.,
extrapolation and interpolation).

9.4.1 Independence

Testing for this assumption is a bit nebulous in exploratory factor analysis, as there are
no independent and dependent variables that allow for this type of examination. In the
absence of statistical evidence, we will rely on theoretical evidence: If the units have
been randomly sampled from a population, there is evidence that the assumption of
independence has been met.

9.4.2 Linearity

Linearity is an important assumption since correlation matrices underlie conventional
EFA. You may recall that when you studied bivariate correlations, as well as simple
and multiple regression, that scatterplots were one way that linearity could be exam-
ined. We will again use scatterplots to visually assess linearity. The challenge with
EFA, as compared to other procedures where scatterplots have been applied, is the
large (and often very large) number of variables, which makes review of all possible
pairs of variables quite daunting and an inefficient use of your time. For example, with
10 variables (which tends to be toward the lower limit of the number of variables often
applied to EFA), there are [10(10 — 1)]/2 or 45 different pairwise combinations of the
variables, and with 20 variables there are nearly 200 combinations! One work-around
for this is to generate and examine a few random scatterplots, assuming that these
are representative of the entire population of scatterplots. Don’t be surprised if the
scatterplots do not provide picture-perfect linear relationships, and don’t be ready to
discard or transform variables if that is indeed the case—those consequences should be
reserved only for cases where obvious curvilinearity is observed. For the PIAAC data,
I ran a number of bivariate scatterplots and while not all scatterplots suggested a strong
linear relationship, there does not appear to be evidence to suggest curvilinear asso-
ciations. One example, graphing ‘index of use of numeracy skills at work (basic and
advanced)’ with ‘index of use of reading skills at home (prose and document texts),’
is presented here:
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(prose and document texts - derived)

9.4.3 Absence of Outliers

As discussed previously, factor analysis is quite robust to violations of the assump-
tion of normality except where tests of inference are used to determine the number
of factors to retain, and in this case, multivariate normality is an assumption. For this
illustration, we are using maximum likelihood and thus will be thorough in our exam-
ination of multivariate normality.

We can examine univariate normality tests, which are less sensitive than multi-
variate normality tests, through skewness and kurtosis, formal tests of normality,
and plots (e.g., Q-Q plots). Multivariate outliers are evidenced by statistically sig-
nificant Mahalanobis distance scores (alpha = .001 if you tend toward the liberal
edge, which is appropriate with EFA), evaluated using a chi-square distribution
with degrees of freedom equal to the number of variables. To generate Mahalano-
bis distance, we will generate multiple regression, applying all the variables as
independent variables with the dependent variable being a binary variable coded
1 for potential outliers and 0 for all other variables within the model. The pro-
cess for examining outliers is therefore to look for univariate outliers first. If any
are detected, then screen for multivariate outliers. In terms of multivariate nor-
mality, a macro in SPSS (DeCarlo, 1997) (illustrated in the MANOVA chapter)
can also be used to examine a number of multivariate normality indices including
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(a) multivariate kurtosis (Mardia, 1970), (b) multivariate skewness and kurtosis
based on Small’s (1980) multivariate extension of univariate skewness and kurtosis
(Looney, 1995), (c) multivariate normality omnibus test (Looney, 1995), (d) larg-
est squared and plot of squared Mahalanobis distance, and (e) critical values for
hypothesis test for a single multivariate outlier using Mahalanobis distance (Penny,
1996).

Additionally, not only are we concerned with outlying cases, but we are also concerned
with outlying variables and will need to examine our data for both. These outlying
variables, which can be removed from the model if/when identified, can be determined
by examination of the following: (a) squared multiple correlations with all other varia-
bles and (b) weak correlations with the factors that are identified in the factor analytic
model.

Reviewing univariate normality for the PIAAC data, skewness for all measures are
within the range of +/— 2.0 and kurtosis for all measures are within +/— 7.0, suggesting
evidence of normality.

Descriptive Statistics

N Skewness Kurtosis

Statistic | Statistic | Std. Error | Statistic | Std. Error
Index of use of numeracy skills at home (basic 191 1.220 176 5.663 350
and advanced—derived)
Index of use of numeracy skills at work (basic 191 929 176 2.516 350
and advanced—derived)
Index of use of ICT skills at home (derived) 191 1.048 176 3.149 350
Index of use of reading skills at home (prose 191 .837 176 1.896 350
and document texts—derived)
Index of use of task discretion at work (derived) 191 1.431 .176 2.249 .350
Index of learning at work (derived) 191 449 176 -.450 350
Index of use of planning skills at work (derived) 191 479 176 -1.121 .350
Index of readiness to learn (derived) 191 878 176 -.110 .350
Index of use of ICT skills at work (derived) 191 457 176 .630 350
Index of use of influencing skills at work 191 1.018 176 1.894 .350
(derived)
Index of use of reading skills at work (prose and 191 .924 176 2.960 .350
document texts—derived)
Index of use of writing skills at work (derived) 191 1.116 176 3.656 .350
Index of use of writing skills at home (derived) 191 .642 176 4.601 350
Valid N (listwise) 191

Shapiro-Wilk’s formal test of normality was statistically significant for all variables suggesting evidence of
nonnormality.
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Tests of Normality

Kolmogorov-Smirnov* Shapiro-Wilk

Statistic df | Sig. | Statistic | df | Sig.
Index of use of numeracy skills at home (basic and .098 | 191 | .000 920 | 191 | .000
advanced—derived)
Index of use of numeracy skills at work (basic and 075 | 191 | .011 950 | 191 | .000
advanced—derived)
Index of use of ICT skills at home (derived) .068 | 191 | .030 951 | 191 | .000
Index of use of reading skills at home (prose and .062 | 191 | .075 964 | 191 | .000
document texts—derived)
Index of use of task discretion at work (derived) 161 | 191 | .000 878 | 191 | .000
Index of learning at work (derived) 118 | 191 | .000 938 | 191 | .000
Index of use of planning skills at work (derived) 183 | 191 | .000 .874 | 191 | .000
Index of readiness to learn (derived) .142 | 191 | .000 .895 | 191 | .000
Index of use of ICT skills at work (derived) .077 | 191 | .007 983 | 191 | .021
Index of use of influencing skills at work (derived) .103 | 191 | .000 927 | 191 | .000
Index of use of reading skills at work (prose and .107 | 191 | .000 951 | 191 | .000
document texts—derived)
Index of use of writing skills at work (derived) 124 | 191 | .000 915 | 191 | .000
Index of use of writing skills at home (derived) .106 | 191 | .000 937 | 191 | .000

a. Lilliefors Significance Correction
The normal and detrended Q-Q plots suggest at least one potential outlying case for

all 13 variables. For example, the ‘index of use of writing skills at work’ suggests that
cases 1-6 may be outliers.

Normal Q-Q Plot of Index of Use of Writing Skills at Work (Derived)

Expected Normal

0 2 4 6
Observed Value
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Detrended Normal Q-Q Plot of Index of Use of Writing Skills at Work (Derived

2.0
1.5
1.0
0.5+

0.0 %) ©
o
= @

—0.5+

Dev from Normal
o]
[=]

Observed Value

Reviewing boxplots, there are quite a few variables that have outliers suggested by
the graph. For many (but not all) of the variables, these are at least some of the same
cases that showed up as potential outliers in the Q-Q plots. The boxplot for the ‘index
of use of writing skills at work’ suggests additional outliers that were not as evident in
reviewing the Q-Q plot—mnot only cases 1-6 but also cases 7-8 and 188—191.

4
*3
2
6-
56
o
7
8
8
4 JE—
2
188 189
191
190
0

Index of use of writing skills at work (derived)
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Now that we’ve screened for univariate outliers and have identified cases that are sug-
gestive of outliers, we need to screen for multivariate outliers. To do so, we create a
new binary variable with ‘1’ denoting that it showed up as an outlier and ‘0’ denoting
nonoutlying cases. This has been saved in the PIAAC.EFA .sav data file and is labeled
‘OUTLIER.’ This binary variable will be our dependent variable in a multiple regres-
sion model with all 13 of the index variables as the independent variables. (By this
point in your statistics career, it is assumed that you are familiar with creating a new
variable, thus the process for doing so is not presented. Should you need a refresher
on generating multiple regression, please review the earlier chapter in this text.) When
generating the multiple regression model, we are not interested in the results of the
analysis. Rather, we run it simply to save the Mahalanobis distance values (saved as
MAH_1 in the data file). Multivariate outliers are evidenced by statistically significant
Mahalanobis distance values, evaluated using a chi-square distribution with degrees of
freedom equal to the number of variables. With alpha of .001, our chi-square critical
value is 34.53, and our Mahalanobis distance values range from 1.84 to 56.11. For-
tunately, there are only five cases with statistically significant Mahalanobis distance
values.

Mahalanobis Distance

Frequency | Percent | Valid Percent | Cumulative Percent
Valid | 37.54589 1 20.0 20.0 20.0
39.71767 1 20.0 20.0 40.0
42.84545 1 20.0 20.0 60.0
43.86517 1 20.0 20.0 80.0
56.11096 1 20.0 20.0 100.0

Total 5 100.0 100.0

We will retain these cases for the illustration given that factor analysis is relatively
robust to violations with the exception of tests of inference. (Had we filtered them
out, we would see that we still end up with a two-factor solution, however only seven
variables remain in the model due to the communalities greater than 1 error. For prac-
tice, you may want to try this yourself!) In this illustration, we have used maximum
likelihood so we are concerned with multivariate normality. As we present our results,
we will caution readers to this limitation of our data.

In terms of outlying variables, our final factor model did not suggest this was problem-
atic (i.e., both factors had multiple items).

9.4.4 Extreme Multicollinearity and Singularity

For EFA, the simplest method to detect extreme multicollinearity and singularity is to
conduct a series of multiple regression models, one regression model for each varia-
ble where that variable is the dependent variable and all remaining variables are the
independent variables. If any of the resultant R; values are close to one (greater than
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.9 is a good guideline to go by), then there may be an extreme collinearity problem.
However, large R? values may also be due to small sample sizes; thus, be cautious in
interpretation in cases where the number of cases is small. If the number of variables is
greater than or equal to n, then perfect collinearity is a possibility. The results are not
presented here for brevity; however, the largest multiple R squared values were under
.50, suggesting no problems with extreme multicollinearity.

To prevent singularity, none of the variables that are being used is a composite variable
for which the component variables are also included in the EFA model.

9.5 RESEARCH QUESTION TEMPLATE
AND EXAMPLE WRITE-UP

Finally, here is an example paragraph for the results of the exploratory factor analysis.
Recall that our graduate research assistants, Addie and Oso, were assisting Dr. Wes-
ley, a faculty member in higher education. Specifically, Dr. Wesley was interested
in better understanding the underlying constructs of measures of perceived use of
skills. The research question presented to Dr. Wesley from Addie and Oso included
the following: What is the underlying factor structure for perceived use of skills at
home and work?

Addie and Oso then assisted Dr. Wesley in conducting exploratory factor analysis, and
a template for writing the research question for exploratory factor analysis is presented
below.

What is the underlying factor structure for [variable set]?

It may be helpful to preface the results of the exploratory factor analysis with
information on an examination of the extent to which the data were thoroughly
screened.

Prior to conducting the exploratory factor analysis, the data were screened
to determine the extent to which the assumptions associated with explora-
tory factor analysis were met. These assumptions included (a) independence,
(b) linearity, (c) absence of outliers (both univariate and multivariate), and
(d) lack of extreme multicollinearity and singularity. Because the data were
not randomly sampled, there is a possibility that the assumption of inde-
pendence has not been met. Scatterplots of each combination of variables
were generated and generally suggested that the assumption of linearity
was feasible, as there was no evidence of curvilinear or other nonlinear rela-
tionships. Normal and detrended Q-Q plots and boxplots suggest the pres-
ence of a few univariate outliers. These outlying points were examined as
potential multivariate outliers. Mahalanobis distance values were computed
using the outlying points coded as binary dependent variables and all other
variables as independent variables in a multiple regression model. Five of the
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cases had statistically significant Mahalanobis distance values. These items
were retained, as EFA is relatively robust to violations of normality with the
exception of tests of inference. However, given that maximum likelihood was
the estimation method, multivariate normality was a concern. Given there is
some evidence to suggest multivariate nonnormality, the model was rerun
excluding the potential multivariate outliers. A two-factor solution with seven
of the eight variables was achieved. Because the variable was theoretically
important, it was retained in the model and the solution reflects all eight
variables. Extreme multicollinearity was screened for by conducting a series
of multiple regression models, one regression model for each variable where
that variable is the dependent variable and all other variables are the inde-
pendent variables. There were no multiple R squared values that were close
to one; all were under .50, suggesting no problems with multicollinearity. To
prevent singularity, none of the variables used are composite variables for
which the component variables are also included.

Here is an example write-up of how the results for exploratory factor analysis can be
presented (remember that this will be prefaced by the previous paragraph reporting the
extent to which the data were thoroughly screened).

Evidence for construct validity of indices of home and work skills from the
PIAAC was obtained using exploratory factor analysis.

Criteria that is often used to determine factorability of variables was applied
in this analysis. These initial factorability criteria included examination of the
following: (1) bivariate correlations, (2) Kaiser-Meyer-Olkin measure of sampling
adequacy (overall and individual), (3) Bartlett’s test of sphericity, and (4) com-
munalities. Based on communalities above 1.0, there were five variables that
were removed during this initial stage of determining factorability. The removal
of these variables was done through an iterative process of removing the index
with the highest communality, rerunning the EFA, and then examining the com-
munalities. This process was repeated for each of the indices removed. The
analysis presented is based on the remaining eight items.

Three of the eight items correlated at least .30 with at least one other item
and an additional variable was nearly .30 (see Table 1). The overall Kaiser-
Meyer-Olkin measure of sampling adequacy was .695, larger than the recom-
mended value of .50. In addition, the measure of sampling adequacy values
for the individual items were all larger than the recommended value of .50.
Bartlett’s test of sphericity was statistically significant [y2 (28) = 193.696, p <
.001]. An additional criterion commonly used to determine factorability is that
communalities should be above the recommended value of .30, providing evi-
dence of shared variance among the items. In reviewing extracted commu-
nalities of the eight items, one-half of the variables (4 of the 8 variables) were
below .30 (see Table 2). However, given the other criteria for determining
factorability were met, it was determined that it was reasonable to proceed
with determining the factor structure of the eight items.

Maximum likelihood estimation with promax rotation was used to extract
the factors from the data. Parallel analysis was used to determine the number
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M TABLE 1
Correlation Matrix for Cognitive and Work Ability Indices (N =191)

Item 1 2 3 4 5 6 7

1. Index of use of numeracy skills at home (basic and advanced) —

2. Index of use of numeracy skills at work (basic and advanced) 292 —

3. Index of use of ICT skills at home (derived) 554 176 —

4. Index of use of reading skills at home (prose and document texts) .418 .166 .374 —

5. Index of use of task discretion at work 015 .086 .014 .049 —

6. Index of learning at work .001 .098 .045 .107 .037 —

7. Index of use of planning skills at work —202 .013 —.111 —.048 .140 .139 —
8. Index of readiness to learn 246 161 .341 .296 .206 .167 .026
M TABLE 2

Factor Loadings and Communalities Based on Maximum Likelihood Analysis for Cognitive and
Work Ability Indices (N = 191)

Indices of Indices of Work
Item Cognitive Skills Abilities Communality
1. Index of use of numeracy skills at home .833 —.076 741
(basic and advanced)
2. Index of use of numeracy skills at work 333 124 116
(basic and advanced)
3. Index of use of ICT skills at home (derived) .676 .145 458
4. Index of use of reading skills at home (prose .535 214 .303
and document texts)
5. Index of use of task discretion at work .074 315 .100
6. Index of learning at work .077 .305 .094
7. Index of use of planning skills at work —-.168 273 121
8. Index of readiness to learn 436 .549 424

of factors to retain. Both 100 parallel datasets using artificial normally distrib-
uted raw data and 1,000 parallel datasets using permutated data suggested
a two-factor model was appropriate (i.e., the first two raw data eigenval-
ues were greater than the random and permutated mean and 95th percentile
eigenvalues; all other raw data eigenvalues were less in value). Although a
more subjective tool for determining the number of factors, the scree plot
indicated the eigenvalues leveled off after two factors, again supporting a
two-factor solution. Interpretation of a two-factor solution was also plausible
and was a consideration in retaining two factors. The two-factor solution rep-
resented about 30% of the variance explained when extracted. The correlation
between the two extracted factors was .165.
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All items contributed to a simple factor structure and had a primary fac-
tor loading above the recommended .30 with one exception—index of use of
planning skills at work—which had a primary factor loading in the structure
matrix of .273. One variable (index of readiness to learn) had similar factor
loadings for each factor but loaded slightly stronger on factor two. All other
variables had a strong primary loading with only one of the two factors in the
factor structure. However, for interpretative purposes, this item was grouped
with factor two. Table 2 provides the factor loading pattern matrix for the final
solution. The names for the two factors are (1) Indices of Cognitive Skills and
(2) Indices of Work Abilities. The results of the factor analysis lend support to
internal structure validity evidence supporting the conclusion that the scores
from this instrument are a valid assessment of skills and abilities, specifically
Indices of Cognitive Skills and Indices of Work Abilities. Composite scores
were created for the two factors by computing the mean sum of the items that
loaded most strongly on each of the factors.

PROBLEMS

Conceptual Problems

1.

If your research goal is to attach meaning to the identified factors, which form of
factor analysis is needed?

a. Common factor analysis

b. Principal component analysis

What is the recommended sample size for EFA?

At least 100

b. Atleast 300

c. Atleast 500

d. Current research does not recommend adhering to an absolute number of
cases threshold

®

Which one of the following commonly held recommendations has been shown by
simulation research to often overestimate the number of factors?

a. Bartlett’s test

b. Kaiser’s rule

¢. Measure of sampling adequacy

d. Scree plot

A researcher calculates KMO measure of sampling adequacy and finds a value
of .60. Does this provide one form of acceptable evidence to continue the factor

analysis?
a. Yes
b. No

Which one of the following is not used as an index to determine the initial factor-
ability of items?

a. Correlations among observed items

b. Communalities

¢. Measure of sampling adequacy

d. Scree plot
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6. A researcher assumes the items they are factoring are related. Which one of the
following rotation methods should be applied?
a. Oblique
b. Orthogonal

7. Aresearcher generates factor analysis and finds that the various indices all suggest
different numbers of factors. How should the researcher determine the number of
factors?

a. Select the fewest number of factors suggested by the results.

b. Select the number of factors based on where the elbow bends in the scree
plot.

c. Apply Kaiser’s rule, selecting the number of factors with eigenvalues greater
than one.

d. Use theory to interpret results from all indices, selecting the number of factors
supported statistically and defensible by theory.

8. Which one of the following is not an assumption of factor analysis?
a. Absence of outliers
b. Homogeneity of variances
c. Linearity
d. Noncollinearity

9. The measurement scale for conventional factor analysis should be at least which

one of the following?
a. Nominal

b. Ordinal
c. Interval
d. Ratio

10. What factor loading is recommended for retaining a variable in a factor?
a. .10

b. .30
c. .60
d. .80

Computational Problems

1. Using the CH9 HW1 PRESCHOOL.sav dataset, conduct exploratory factor
analysis following the steps in this chapter, using maximum likelihood estimation
and promax rotation. Determine initial factorability using overall MSA, Bartlett’s
test of sphericity, and communalities. Review the pattern and structure matrix for
the initial solution, and determine the variables that appear to cluster together
based on the pattern matrix.

2. Using the CH9 HW2 PIAAC NORWAY.sav dataset, conduct exploratory fac-
tor analysis following the steps in this chapter, using maximum likelihood esti-
mation and promax rotation. Determine initial factorability using overall MSA,
Bartlett’s test of sphericity, and communalities. Review the pattern and structure
matrix for the initial solution, and determine the variables that appear to clus-
ter together based on the pattern matrix. (Note: This data has been delimited to
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individuals who indicated their highest level of school was ‘above high school’
[B_Q01a_T = 3] and who were employed the year prior to completing the survey

[B Ol5a=1].)

Interpretive Problem

1. Use SPSS to conduct exploratory factor analysis with the continuous PIAAC
index variables from Italy (CH9 HW _INTERPRETATIVE ITALY.sav). The data
file has been delimited to include only individuals who reported having ‘above
high school’ education [B_Q0la T = 3] and who had complete data on the index
variables. Write up the results. Just for fun, compare the results using maximum
likelihood estimation as compared to other estimation results. For even further
fun, conduct CATPCA using the categorized index variables.
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