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EXPLORATORY FACTOR 
ANALYSIS

KEY CONCEPTS

1.	 Factor
2.	 Eigenvalue
3.	 Communality
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4.	 Factor extraction
5.	 Orthogonal rotation
6.	 Oblique rotation
7.	 Factor retention

Up to this point, we have generally concerned our analyses with procedures that have as 
the goal the examination of one or more a priori outcomes. With this chapter, we begin 
to deviate from this method of examination in that we are now doing just as the name of 
this procedure implies—exploring the data. Actually, some would say it is not even that 
but rather “it is reconnaissance” (Kaiser, 1970, p.Â€402). Rather than having one or more a 
priori outcomes, we are using exploratory factor analysis to reduce a large number of var-
iables into identifiable clusters of variables to better understand the structure of the data.

Our objectives are that, by the end of this chapter, you will be able to (a) understand the 
concepts underlying exploratory factor analysis, (b) determine and interpret the results 
of exploratory factor analysis, and (c) understand and evaluate how to screen data prior 
to conducting exploratory factor analysis.

9.1â•‡� WHAT EXPLORATORY FACTOR ANALYSIS  
IS AND HOW IT WORKS

As we visit the statistics lab today, we find that Addie Venture and Oso Wyse have been 
tasked with an exploration analysis of data.

As graduate student researchers in the stats lab, Addie and Oso have become 
quite accustomed to working with their teammates on data analyses that 
examine one or more outcomes of interest. Many times, these outcomes have 
been computed as composite variables from psychological assessments. While 
Addie and Oso have appreciated the ability to group together individual items 
to form various constructs, they had never really been concerned with the 
process underlying that construction—until today, that is. Dr. Wesley, a faculty 
member from the Higher Education program, is interested in examining the 
factor structure of measures of perceived use of skills at home and at the 
workplace for a select group of individuals who participated in the Survey of 
Adult Skills, a large data collection effort from the Organization for Economic 
Cooperation and Development’s Programme for the International Assessment 
of Adult Competencies (PIAAC). Addie and Oso suggest the following research 
question to Dr. Wesley: What is the underlying factor structure for perceived 
use of skills at home and work? Given that dimension reduction is the goal 
of the project, the team recommends exploratory factor analysis to answer 
Dr.  Wesley’s question. Always up for adventure and armed with statistical 
knowledge, Addie and Oso are excited to embark on this task.

Globally, exploratory factor analysis (EFA) is a statistical procedure that allows us to 
cluster together variables into what we’ll refer to in this chapter as factors (but are also 
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known as constructs or latent constructs, a term we will use when we discuss confirma-
tory factor analysis). These variables may be, as just one example, a number of indices 
designed to measure general skills. Examining each of the variables individually may 
provide useful information simply by reviewing descriptive statistics of the individual 
measures. However, even more useful information may be provided by examining the 
underlying constructs from the variables, those variables that group together and make 
the number of measures parsimonious and more manageable. In essence, what explor-
atory factor analysis allows us to do is to work with all variables simultaneously, but 
at the same time know something about their underlying data structure. Exploratory 
factor analysis is therefore often used to provide evidence of construct validity. The 
underlying focus of factor analysis deals with finding common variance (distributed 
among the factors) and eliminating the unique variance that is not of interest (where 
total varianceÂ€=Â€common variance + specific variance + error variance).

Although confirmatory factor analysis will be introduced in detail in a later chapter, 
it is important to broach the topic here so there is a good understanding of when each 
is most appropriate. Confirmatory factor analysis is a statistical technique that can be 
used to identify the factor structure of observed variables and to test the hypothesis 
that a relationship exists between the respective observed variables and one or more 
underlying latent constructs. Additionally, much of the terminology and concepts that 
we will discuss in relation to EFA generalize to CFA. The titles of the procedures may 
give some indication of when one is more appropriate than the other is. By nature of 
exploration, EFA is appropriate when there is a lack of theory to dictate relationships 
between the variables. Brown refers to this as a “data-driven approach” (2006, p.Â€14). 
In comparison, CFA is appropriate when a strong theoretical base exists such that the 
relationships between variables are known and can be specified in the modeling pro-
cess. In fact, it is very common for researchers to first conduct EFA prior to CFA so that 
there is a better understanding of how the items relate to each other and the underlying 
constructs or factors.

9.1.1â•‡� Characteristics

9.1.1.1â•‡� Principal Components Versus Exploratory Factor Analysis

Before we delve into this chapter, it is important to understand the difference between 
principal components analysis (PCA, sometimes also known as ‘component factor 
analysis’ or ‘component analysis’) and exploratory factor analysis (EFA, sometimes 
known as ‘common factor analysis’). There is a difference, although in reading pub-
lished literature, it seems that many authors understand them to be used interchangea-
bly (and they should not be). If your goal is to estimate underlying factors and attach 
some meaning to those factors (as a form of construct validity, for example), then 
EFA is required. PCA, on the other hand, can be used to estimate and understand the 
contributions of the variables to the linear components within the data, but PCA is 
simply a method of decomposition—a technique for data reduction only. As stated 
by Borsboom, “the extraction of a principal components structure, by itself, will not 
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ordinarily shed much light on the correspondence with a putative latent variable struc-
ture” (Borsboom, 2006, p.Â€426). If the interest is in placing substantive meaning on 
the factors extracted, EFA is the procedure needed. Throughout the chapter, it will be 
assumed that EFA is the goal. However, keep in mind that generating PCA or EFA is 
as simple as a toggle menu option in SPSS. While the results are mathematically dif-
ferent, the solutions you see may actually be quite similar. This is, again, one of those 
times when you must be a responsible researcher and understand the goal of your 
research (decomposition only, PCA, or extraction of meaning, EFA) so that you can 
select the appropriate method.

9.1.1.2â•‡�E xploratory Factor Analysis Specification  
Conditions and Decisions

There are a number of conditions that must be understood and decisions that must be 
made when selecting to use and implement either PCA or EFA. These are related to

a.	 determining factorability
b.	 fitting the factor model
c.	 selecting the factor(s)
d.	 rotating the factor solution

As we’ll learn, researchers must first determine if factor analysis is appropriate for 
both their research question and their data. Within factorability, we will discuss meaÂ�
surement scale, sample size, and sample homogeneity, followed by tools for determin-
ing initial factorability. Second, researchers must select procedures to fit the model 
and estimate the model parameters. Within this realm, factor extraction and factor 
rotation will be reviewed. Third, the number of common factors to specify when fitting 
the model has to be determined. Lastly, whether or not to rotate, and how to rotate if 
needed, must be determined.

9.1.1.3â•‡�F actorability

Measurement scale and sample homogeneity are important considerations for 
determining factorability. Sample size (discussed later in the chapter) is also a 
consideration. In this section, we will also discuss tools for determining initial 
factorability.

Measurement Scale of Variables

It is important to remember that factor analysis (PCA and EFA) has as the primary 
requirement that a correlation matrix (denoted in statistical terms as uppercase bold 
R, the input correlation matrix with unities—or 1.0—in the diagonal, which is also 
referred to as the unreduced correlation matrix) be calculated from the variables in the 
model. (Note that a covariance matrix can also be applied in EFA; interpretation tends 
to be much easier with a correlation matrix. The remainder of the chapter will focus 
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on a correlation matrix.) With conventional factor analysis, the computed correlation 
matrix is a Pearson matrix. This, therefore, suggests that the variables applied must 
be metric (at least interval in scale) so that a linear relationship exists between the 
variables. (However, this does not guarantee that linearity will be met.) AÂ€bit more will 
be added to this discussion as we talk about factor loadings later in the chapter. Even 
though one of the conditions of conventional factor analysis is measurement that is 
at least interval in scale, it is quite common to find factor analysis applied to Likert- 
type items which are ordinal in scale (e.g., five-point scale ranging from strongly 
agree to strongly disagree), particularly as the number of levels of the items increases. 
And should you find that your ordinal items meet the assumption of linearity, then 
proceeding with the factor analysis is fine (assuming other conditions and assump-
tions are satisfactorily met). However, items with small numbers of levels (less than 
seven categories in particular) are often not good candidates for conventional factor 
analysis, and the factors may be more difficult to interpret. Technically, binary (i.e., 
dichotomous) items can be factor analyzed with conventional methods, however the 
interpretation can be problematic as the results can reflect variation in the endorse-
ment rate of the variables rather than the underlying construct (FabrigarÂ€& Wegener, 
2012). Categorical variables that have similar splits will tend to correlate even if the 
context of correlation of the variables doesn’t make sense (see Gorsuch, 1983). This 
problem is augmented with binary data where correlations tend to reflect similar ‘diffi-
culty’ as evidenced in a testing type of environment. If you do decide to proceed with 
conventional factor analysis using categorical variables, the factor loadings should be 
examined with extreme care to determine if they reflect ‘difficulty’ (where difficulty is 
defined as approximately the proportion of individuals with a ‘1’ for their item score, 
as opposed to a ‘0’) as compared to a substantive relationship. The use of binary data 
in conventional factor analysis can also result in a factor solution with too many fac-
tors. In the case of categorical variables, dichotomous in particular, it is highly recom-
mended that a specialized factor analytic program that is designed for that type of data 
be applied to it. Later in this chapter, SPSS categorical principal components analysis 
(CATPCA), an add-on in SPSS, will be used to illustrate the application of ordinal data 
with factor analysis.

Homogeneity of the Sample in Relation to  
the Underlying Factor Structure

An important condition of factor analysis is that the sample of cases from which the 
variables were measured must be homogenous in respect to the underlying factor 
structure. In other words, if your collective sample of cases is known to differ, based 
on some characteristic, on the set of variables for which you are factor analyzing, then 
separate factor analysis should be performed for the groups that are anticipated to dif-
fer. For example, say that all employees of a company have been surveyed about their 
perceptions of the work environment, and previous empirical research suggests that 
those in management positions have different perceptions as compared to nonmanage-
ment positions. The factor analysis should be conducted separately for those groups 
(i.e., management and nonmanagement) that are expected to differ.
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Initial Factorability Assessment

There are a number of indices that should be reviewed prior to conducting the factor 
analysis that will help you gauge the extent to which the variables and the matrices 
produced from them are factorable. These include (1) correlation coefficient values, 
(2) Bartlett’s test of sphericity, (3) anti-image correlation matrix, and (4) Kaiser- 
Meyer-Olkin measure of sampling adequacy.

Correlation coefficient values between the variables being factor analyzed should be 
.30 (in absolute value terms) or greater. This will ensure sufficient relationships to jus-
tify examination of the potential underlying components. Correlations lower than .30 
may be due to low variance, which can result when samples are homogenous (but does 
not necessarily imply homogeneity in the sample). (However, correlations of more 
complex scores, such as difference scores, may have correlations between .20 and .30 
and still have variables that are extremely factorable.) If there are correlation coeffi-
cient values that are not satisfactory and that are not theoretically critical, remove the 
variable with the lowest individual correlation value and rerun (doing so until, collec-
tively, the correlation values reach what you deem acceptable).

Bartlett’s test of sphericity is conducted to determine if the observed correlation matrix 
is statistically significantly different from an identity matrix (i.e., diagonal elements 
are 1 and off-diagonal elements are 0). Statistically significant results for Bartlett’s 
test are desirable, as they allow you to reject the null hypothesis, which states that 
the observed correlation matrix equals the identity matrix. We want to see redundant 
variance, overlapping variance among variables, in order to reduce the variables into a 
fewer number of latent factors, and this is accomplished with a statistically significant 
Bartlett’s test. Should the null hypothesis not be rejected, this provides evidence that 
the correlation matrix produced from the variables cannot be factor analyzed.

Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy (MSA) is an index of 
shared variance in the variables and compares the magnitudes of the observed to those 
of the partial correlation coefficients. MSA values range from zero to one, and large 
values are another form of evidence to suggest that the variables are factorable. In its 
early origination, Kaiser (KaiserÂ€& Rice, 1974, p.Â€112) proposed the following guide-
lines for interpreting the index: in the .90sÂ€=Â€marvelous; in the .80sÂ€=Â€meritorious; in 
the .70sÂ€=Â€middling; in the .60sÂ€=Â€mediocre; in the .50sÂ€=Â€miserable; below .50Â€=Â€unac-
ceptable. As we’ll see when we compute our factor analysis, an MSA for each individ-
ual item and an overall MSA will be generated. If the overall MSA is not satisfactory, 
remove the variable with the lowest individual MSA value and rerun (doing so until 
the MSA value reaches what you deem acceptable). The overall KMO-MSA numer-
ator is the sum of squared correlations of all variables, and the denominator is the 
numerator value (i.e., the sum of squared correlations of all variables) plus the sum of 
squared partial correlations of each variable i with each variable j, controlling for the 
other variables. The idea behind the MSA is that the partial correlations (reflected in 
the denominator) should not be relatively small if one is to expect distinct factors to 



368  â†œæ¸€å±®  â†œæ¸€å±® 	E xploratory Factor Analysis

emerge from factor analysis (i.e., creating a small denominator that will then provide 
for a larger MSA value). The size of the MSA can therefore be expected to increase as 
the following increase—sample size, average correlation, number of variables—and 
as the number of factors decrease. In SPSS, the MSA values are provided on the diag-
onal of the anti-image correlation matrix.

9.1.1.4â•‡�F itting the Factor Model

Factor Extraction

Assuming you have made it through the previous examination and have determined 
that factor analysis is appropriate for your data, the next level of decisions has to deal 
with implementing or actually computing the factor analysis. Beginning with this sec-
tion, we will discuss a number of concepts and procedures that should be understood 
to fit the model appropriately. Fitting the model, in reference to factor analysis, is also 
known as factor extraction. Although many times the algorithms will produce similar 
results, this is not always the case. Therefore, understanding how they operate and 
situations where they are most effective is needed.

Factor analytic models that generate two or more factors will have an infinite num-
ber of ways that the factors can be oriented in multidimensional space, each with an 
equally best-fitting solution (FabrigarÂ€ & Wegener, 2012). Let’s say that we have a 
factor model where two factors are suggested. If we think about our items in two- 
dimensional space, the axes represent the factors and the space between the individual 
observed variables represents their intercorrelations—variables closer together have 
stronger relationships with each other. This implies that one single unique best-fitting 
solution does not exist when the model generates more than one factor. Therefore, 
this puts the burden on the researchers to select one solution. This decision process 
of factors to retain is the factor extraction process. Good model fit is achieved when 
the mathematical model for converting physical distance into predicted correlations 
between variables is similar to the correlations among observed variables.

A number of different algorithms can be used to fit factor analytic models, all of which 
calculate orthogonal factors that combine to reproduce the correlation matrix. Our dis-
cussion will focus on a few of the most common. Those commonly found in standard 
statistical software include principal components, unweighted least squares, gener-
alized (weighted) least squares, maximum likelihood, principal axis factoring, alpha 
factoring, and image factoring. Of these, principal components, principal axis, and 
maximum likelihood are likely the most common and are those on which our discus-
sion will focus. In addition to its common use in EFA, maximum likelihood is also the 
most commonly applied estimation method in CFA (Brown, 2006).

Which extraction method selected is the researcher’s choice. Generally, any extrac-
tion method will require rotation in order for the solution to be interpretable. The 
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solutions from the different extraction methods will converge in situations where you 
have a large number of cases and variables and communality estimates that are simi-
lar. Evidence of the stability of your factor solution can be seen in cases where there 
is convergence of factor analytic solutions when using different extraction methods. 
While applying every estimation procedure to your data would be akin to a fishing 
expedition, it is quite common to select a small handful of estimation techniques to 
test the stability of your factor analytic model under different estimation methods—for 
example, first applying principal axis factoring then proceeding with maximum like-
lihood and ceasing the analyses when a sound solution is achieved. Generating factor 
analysis using two different estimation methods has been recommended (Child, 2006). 
Should the solutions result in discrepancies, an attempt to determine the reason(s) for 
the discrepancies is appropriate, followed by generation of the factor model with a 
third estimation technique (Child, 2006).

Principal Components

We have already broached the topic of principal components analysis as compared 
to common factor analysis, thus we will not delve further into that difference other 
than to mention a few notables as it relates to how the data is extracted. In a nutshell, 
the variance is analyzed in PCA whereas the covariance (communality) is analyzed 
in common factor analysis. In PCA, the goal is to extract the most variance from the 
variables with each factor.

Unweighted and Generalized (Weighted) Least Squares

Both unweighted and weighted least squares methods of factor extraction attempt to 
minimize the squared differences between the observed and reproduced (off-diagonal) 
correlation matrices. The difference between the two is that variables that share sub-
stantial variance with other variables are weighted more heavily, and variables that 
have more unique variance (i.e., less shared variance) receive less weight. The heavily 
weighted items thus contribute more to the solution than the items with lesser weight.

Maximum Likelihood (ML)

Maximum likelihood estimation calculates factor loadings that maximize the proba-
bility that the observed correlation matrix would be sampled from the population. ML 
is the most statistically advanced extraction method and one of the most commonly 
applied.

Principal Axis Factoring

Principal axis factoring has communality estimates, which are estimated through an 
iterative process, in the diagonal of the correlation matrix. The goal of principal axis 
factoring is to extract maximum variance from the variables with each factor, and 
this makes principal axis factoring less desirable in some situations as compared to 
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other extraction methods that can be more effective in reproducing the correlation 
matrix. Principal axis factoring is one of the most commonly applied extraction meth-
ods (Child, 2006).

Alpha Factoring

Alpha factoring uses an iterative procedure to estimate communalities that then maxi-
mize coefficient alpha (i.e., an index of reliability). Unlike score reliability in psycho-
metric research (i.e., consistency of subjects), alpha factoring focuses on determining 
consistency of variables, in other words, extracting factors that are consistently found 
when repeated samples of variables (not subjects) are drawn from a population of 
variables (not subjects).

Image Factoring

Image factoring uses multiple regression, with each variable serving as the dependent 
variable and the remaining as the independent variables, to predict image scores that 
are then used to compute a covariance matrix. The communalities in this extraction 
method are the variances from the image score covariance matrix. Factor loadings 
represent covariance values (as compared to correlation values seen in the other esti-
mation procedures) between the factors and variables.

Communalities

The communality, h2, interpreted as the reliability of the variable, measures the per-
cent of variance (squared multiple correlation) of a given variable explained by all 
the factors jointly. The total communality is calculated by adding the squares of all 
the loadings of a variable across the common factors. It is the sum of all the common 
variance—the proportion of common variance within a variable. Computationally, the 
communality is the sum of squared factor loadings for a variable across all the factors.

A variable that has a low communality (.20 or below) has low common variance and 
high specific and error variance. AÂ€variable with a low communality may be a candi-
date for removal from the model, as this suggests that the factor model may not be 
working well for that variable. Low communalities across the set of variables indicate 
that the variables have weak relationships with each other. However, please note the 
following: AÂ€low communality can still be meaningful if the variable is contributing 
to a well-defined factor. The communality coefficient is not the critical element per se, 
but rather it is the extent to which the variable plays a role in the interpretation of the 
factor that is key.

It is also possible to have communalities that are too large. AÂ€communality that exceeds 
1.0 is evidence of a spurious solution and may reflect a sample size that is too small or a 
factor model that has too few or too many factors. If you find yourself in this situation, 
and it is unfeasible to collect more data (either more cases and/or more variables), then 
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remove the variable with the largest communality and rerun, repeating this process  
until the communality estimates are less than one. It is important to note that commu-
nalities are unaffected by rotation but are impacted by extraction method, thus the only 
communalities provided in standard statistical software such as SPSS are the initial 
and extracted estimates. Extracted communalities represent the percent of variance in 
a given variable explained by the extracted factors, which are often fewer in number 
than all the possible factors, resulting in coefficients less than 1.0 (as a side note, the 
communalities will be less than one even initially, with exceptions noted previously). 
Assuming most of the common variance is contained within those extracted factors, 
then the unique variance can be calculated as 1 − h2.

9.1.1.5â•‡�F actor Retention

Once variables are factored, the researcher must determine how many factors to retain. 
While this may hold only a small fraction of this chapter, the number of factors to 
retain has been characterized as “the crucial decision” in the EFA process as when 
the optimal number of factors are retained, other EFA results will generally be similar 
(O’Connor, 2000, p.Â€396). When too few factors are extracted, important information 
is lost, potentially important factors are neglected, error in factor loadings increases, 
and other problematic issues arise (ZwickÂ€& Velicer, 1986). When too many factors are 
retained, factors are unnecessarily split resulting in low loadings and the attribution of 
importance to factors which really are not (ZwickÂ€& Velicer, 1986).

Theoretically, there are as many potential factors as there are variables. For example, 
in a case where 12 variables are being factor analyzed, theoretically, there are 12 fac-
tors. Obviously, a researcher would be ill-guided to retain that many factors, as the goal 
of factor analysis is parsimony (at least in respect to data reduction)—retention of the 
smallest number of factors that explains the most variance of the observed variables. 
Historically, the number of factors to retain from a factor analytic solution have relied 
more often on visual (and subjective) inspection and subjective rules rather than empir-
ical evidence, and there is not one single tool recommended. Rather, multiple decision 
rules are recommended and deemed desirable, as is the application of more sophisticated 
factor retention strategies such as parallel analysis and bootstrapping (ThompsonÂ€ & 
Daniel, 1996). Despite this recommendation, much published research exists that does 
not adhere (e.g., GaskinÂ€& Happell, 2014; HensonÂ€& Roberts, 2006). Never fear, by the 
end of the chapter you will have the skills to call yourself a sophisticated researcher!

Scree Plots

Scree plots, where the number of factors to retain is based on where the elbow bends in 
the plot, are a visual tool that can be used to decide on the number of factors to retain. 
We see an example of a scree plot in TableÂ€9.4. The factor numbers are plotted on the X 
axis and the eigenvalues are on the Y axis. In interpreting the scree plot, we look for the 
clearest delineation where the line goes from being diagonal to being horizontal. Then, 
to determine the number of factors suggested by the scree plot, we count the number of 
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straight lines (not dots), stopping at the point where the line becomes more horizontal 
than diagonal. As with all visual tools, however, there is a certain degree of subjectivity 
that comes with making this decision. Even among experts, the reliability of scree plot 
interpretation is low (Streiner, 1998). When used as a decision rule to determine the 
number of factors to retain, scree plots generally perform better than the eigenvalue 
greater than one rule but are less accurate than parallel analysis (ZwickÂ€& Velicer, 1986).

Kaiser’s Rule (Eigenvalues Greater Than One)

This rule is also known as the Unity Rule or the Kaiser-Guttman Criterion as it was 
proposed by Guttman and modified by Kaiser. Determining the number of factors to 
retain using Kaiser’s Rule is quite simple—only those factors with eigenvalues greater 
than 1.0 are retained and factors with eigenvalues that are less than 1.0 are dropped. 
The value of one is the cut point given that the total variance contributed by each 
variable is one, and the variance of the factors retained should be greater than the con-
tribution of only one variable. Eigenvalues, also known as characteristic roots or latent 
roots, are a measure of variance that are computed from the input (i.e., unreduced) 
correlation matrix. More specifically, eigenvalues measure the amount of variance in 
the total sample that is accounted for by each factor, and eigenvectors summarize this 
variance for the respective correlation or variance-covariance matrix (Brown, 2006). 
Factors with small eigenvalues suggest the respective factor is contributing little to 
explaining the variance in the variables.

Despite its widespread, and often sole, application to determining the number of fac-
tors to retain, the application of eigenvalues greater than one consistently misestimates 
the number of factors (either over- or underestimating) (ZwickÂ€& Velicer, 1982, 1986). 
Other criticisms are that an overestimation of the number of factors occurs when there 
are low communalities and a large number of variables and an underestimation of 
the number of factors to retain occurs when there are a small number of variables or 
when the sample size is very large. Kaiser’s Rule tends to work best in conditions of 
moderate to large communalities, modest sample sizes, and 20–50 variables. Given 
these limiting conditions within which Kaiser’s Rule tends to produce fairly accurate 
estimates, applying Kaiser’s rule should only be done as a starting point (if at all) when 
generating your factor model. When appropriate, the results should be reviewed and 
the model recomputed based on a fixed number of factors.

Parallel Analysis

In comparison to the eigenvalue greater than one rule and visual examination of scree 
plots, there are statistically based procedures that exist for determining the number of 
factors to retain. Parallel analysis is one such procedure that is considered superior for 
determining optimal solutions for factor retention, and with 92% accuracy, has been 
considered the most accurate of the common methods used for retaining factors (includ-
ing Kaiser’s rule, Velicer’s minimum average partial—MAP, scree plots, and Bartlett’s 
test) (ZwickÂ€& Velicer, 1986). Introduced by Horn (Horn, 1965), parallel analysis is a 
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method by which the cut-off point for factor retention can be judged, where below the 
cutoff, the factors possess generally trivial error variance. In simple terms, parallel anal-
ysis generates numerous replications of analyses that are drawn from random, normally 
distributed data with sample size N and number of variables V, concentrating on the 
number of factors that account for more variance than the factors derived from the ran-
dom data (O’Connor, 2000). In other words, eigenvalues are extracted from the random 
data sets that reflect the same number of cases and variables as the observed data (thus 
the random data parallels the observed data in cases and variables). In the example we 
will later work with, we have 191 cases and 8 variables. In parallel analysis, there would 
then be 191 multiplied by 8 random data matrices generated with eigenvalues computed 
for both the observed correlation matrix and each random data matrix. Decisions on the 
number of factors to retain are based on comparing the eigenvalues from the original 
data to the eigenvalues of the random data. Factors are retained when the ith eigenvalue 
from the observed data is greater than the ith eigenvalue from the random data (O’Con-
nor, 2000). Current practice recommends the use of the eigenvalue which corresponds 
to the percentile selected by the researcher (e.g., 95th) (Glorfeld, 1995).

Although parallel analysis is not currently available within the point-and-click user 
interface of popular statistical software such as SPSS, there is user-friendly syntax 
that has been written that allows users to perform this procedure with their own data 
within software such as SPSS and SAS (O’Connor, 2000). The syntax can be copied 
(alleviating potential error in rewriting the code), and the user has to specify only a 
few simple elements: (a) number of cases, (b) number of variables, (c) location of the 
data, and (d) the percentile at which the researcher wishes the analysis to be generated.

Number of Variables per Factor

Researchers also need to consider the number of observed variables per factor in their 
solution. Three variables per factor is the absolute minimum needed to define a factor 
(Child, 2006). Why at least three variables are needed can be understood by consider-
ing a straight line with only two points as estimation of a linear relationship. We can 
imagine how our line may change if error is introduced by drawing two small circles 
around each point. Rather than simply two unique points, now these points can be 
placed anywhere within that circle—this is our margin of error. We can quickly see how 
different our line may be depending on where the points are placed within the circle. 
This illustrates that two points are insufficient for estimation of a linear relationship 
(Child, 2006). Factors that are defined by very few variables (e.g., two or three) may be 
underdetermined and very unstable when the model is replicated (Brown, 2006).

9.1.1.6â•‡�F actor Rotation

Once the data are extracted, it is most always the case that the solution be rotated in 
order for it to be interpretable. In the world of factor analysis, rotation simply means 
that the axes (i.e., factor vectors or reference axes) are placed in a different position 
by turning about the origin (Child, 2006). If the factors are not rotated, axes will lay 
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between the clusters of variables and the variables will not clearly differentiate to a 
primary factor. It is important to note that rotation does nothing to the mathematical 
fit between the observed and reproduced correlation matrices, as there is mathemat-
ical equivalence between solutions prior to rotation and orthogonally rotated solu-
tions. Rather, rotation serves only to clarify and improve the ability to interpret the 
solution—there will be clearer differentiation by factor of the factor loadings of the 
variables. As we discussed with extraction methods, data that has clear correlational 
patterns will likely produce similar results regardless of rotation method. There are 
only two types of rotations: orthogonal and oblique, although there are quite a few 
methods available in standard statistical software that will accomplish the rotation.

Orthogonal Rotation

Variables that are orthogonal are unrelated, and perfect orthogonality is characterized 
by a correlation value of zero. In orthogonal rotation, axes are rotated at 90-degree 
angles. Going back to our general understanding of relationships, a correlation of zero 
means that knowledge of one variable in no way enhances our knowledge of the sec-
ond. Thus, in the context of factor rotation, orthogonal rotation will produce uncor-
related factors. Considering many situations where factor analysis is applied in the 
social sciences in particular (and more specifically as we think about human behavior 
and attributes), however, it is likely the case to anticipate some correlation between 
factors as (more often than not) the constructs being measured are seldom completely 
independent of the others. In cases where some correlation between factors does exist, 
orthogonal rotation will result in a less interpretable solution than oblique rotation. 
Even if there are substantial correlations between factors, orthogonal rotation will con-
strain the solution to produce uncorrelated variables, thereby resulting in misleading 
solutions (Brown, 2006). In cases where there is indeed a lack of relationship between 
factors, orthogonal and oblique rotations will produce quite similar results.

There are a number of different types of orthogonal rotation techniques available in 
standard statistical software. These include varimax, quartimax, and equamax, each 
of which works with a different statistic to maximize or minimize it. Varimax rotation, 
the most common orthogonal rotation, maximizes the variance of the factor loadings 
within the factors and across the variables to simplify the factors. Quartimax rotation, 
on the other hand, maximizes the variance of the factor loadings within the variables 
and across the factor loadings to simplify the variables. Equamax attempts to bridge 
varimax and quartimax by simultaneously simplifying both the factors and the varia-
bles. Equamax is the least preferred orthogonal rotation, as research suggests it is unsta-
ble in situations other than when the number of factors can be specified with confidence.

Oblique Rotation

Factors that are oblique are related, and perfect obliqueness is characterized by a cor-
relation value of one (in absolute value terms). When oblique rotation is applied, the 
factor axes are rotated independently of each other at different angles (i.e., not just 
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90 degrees, as is the case with orthogonal rotation). Going back to our general under-
standing of relationships, a correlation of one means that knowledge of one factor (in 
this case) perfectly enhances our knowledge of the second factor. Thus, in the con-
text of factor rotation, oblique rotation will produce correlated factors (not correlated 
variables). While oblique seems to be the most defensible option of the two rotations 
(given that it is reasonable to assume there would be correlation between constructs), 
be prepared for the possibility that it may increase the difficulty in attaching meaning to 
your factors. This is because there will likely be an increased number of cross-loading 
variables in the oblique, as compared to orthogonal, rotated solution. Cross-loading 
variables are variables that have similar factor loadings for multiple factors. If you are 
unsure which rotation to select, you may wish to test oblique rotation first and review 
the factor correlation matrix. Small factor correlations (e.g., less than .30) may war-
rant orthogonal rotation. There are a few different types of oblique rotation techniques 
available in standard statistical software, including direct oblimin and promax.

Associated Matrices

The type of rotation selected will alter the matrices generated in your factor solution. In an 
orthogonal rotation solution, the structure matrix is simply the factor-loading matrix (and 
is the only matrix that requires review). Oblique rotations will result in generation of both 
a structure and a pattern matrix. The structure matrix coefficients represent the variance 
in the observed variables explained by a factor, both a unique (i.e., relationship between 
the variable and the factor, as with the pattern matrix) and common (i.e., relationship 
between the variable and the shared variance among the factors) contribution. In oblique 
rotations, the structure matrix is the product of the pattern and factor correlation matrices, 
and the loadings in the structure matrix will often be larger than those in the pattern matrix 
because they reflect overlap in the factors (i.e., are inflated due to this), unless there is a 
weak relationship between the factors. The pattern matrix coefficients or loadings repre-
sent unique contributions only, i.e., unique relationships between the variables and fac-
tors. Generally, the larger number of factors, the lower the coefficients in the pattern 
matrix since there is more common contribution to the variance explained. Because both 
a structure and pattern matrix are generated with oblique rotation, this requires examina-
tion of both when interpreting the meaning of the factors. Of the two matrices, the pattern 
matrix is the one that is most often reported and interpreted (Brown, 2006).

9.1.1.7â•‡�F actor Loadings

In simple terms, the factor loading is the coordinate of a variable along a classification 
axis. It reflects the relationship between a factor and an observed variable and is the 
slope of increase (when positive) or decrease (when negative) in the observed variable 
for each unit of increase or decrease in the factor. The factor-loading value is interpreted 
in the same units as the measured variables. Now, this is where consideration of the 
measurement scale of items in the factor analysis come into play.Â€.Â€.Â€.Â€This type of index 
that measures the relationship between the factor and observed variables is meaningful 
if, and only if, the observed variables are measured in such a way that the units can be 
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ordered or ranked and there is equal distance between the units—this implies the varia-
bles must be interval or ratio scale. Nominal and ordinal items (even with three or more 
categories) are usually insufficient to meet this condition (FabrigarÂ€& Wegener, 2012).

The factor loading provides information on the relative contribution that an individ-
ual variable makes to a factor, and the researcher must decide which variables load 
onto which factor. An often-followed, ‘moderately rigorous’ guideline is that a varia-
ble should have a factor loading of at least .30 in order to be retained with that factor; 
however, this rule should be applied only in models with samples of 80 or more (as 
with samples of this size, a correlation coefficient is statistically significant at an alpha 
of .01) (Child, 2006, p.Â€63). AÂ€variable with a factor loading of .30, when squared, is 
interpreted as variance, and this would mean that variable accounts for slightly less 
than 10% (9% specifically) of the common variance of the factor.

A squared factor loading is a measure of variance accounted for, similar to R squared. 
More specifically, it estimates the amount of variance in a factor that is accounted for 
by the individual variable—the proportion of variance in the item response or variable 
scores that are explained by a factor. EFA allows the decomposition of observed vari-
ance into both common/shared variance and unique variance. In the ideal situation, a 
variable will have a large coordinate for only one axis and low coordinates for all other 
axes—providing evidence to suggest that the variable relates to one and only one factor. 
It is possible to have negative factor loadings. Factors that are defined by variables with 
both positive and negative factor loadings are called bipolar factors (Child, 2006). The 
percent of variance in all the variables accounted for by each factor is computed as the 
sum of the squared factor loadings for that factor divided by the number of variables—
which is also the same as dividing the eigenvalue of a factor by the number of variables 
in the model. BoxÂ€9.1 summarizes the process of fitting the factor model.

BOX 9.1â•… FITTING THE FACTOR MODEL

Element Options

Factor 
Extraction

Select an algorithm:
•	 Principal components
•	 Unweighted and generalized (weighted) least squares
•	 Maximum likelihood (ML)
•	 Principal axis factoring
•	 Alpha factoring
•	 Image factoring

Communalities Review communalities:
•	 Low communalities (< 2.0): consider removing unless inclusion of the variable is 

key to interpreting the factor
•	 High communalities (> 1.0): may be evidence of a spurious solution, and may 

reflect a sample size that is too small or a factor model that has too few or too 
many factors. Remove the variable with the largest communality and rerun the 
EFA—repeating this process until the communality estimates are less than one.
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Factor 
Retention

Determine the number of factors to retain:
•	 Scree plots: Subjective visual tool; can be used as a guide but do not rely on this 

absent other more objective means
•	 Eigenvalues greater than one: Kaiser’s Rule works best and produces fairly 

accurate results in conditions of moderate to large communalities, modest sample 
sizes, and 20–50 variables. Given these limiting conditions, applying Kaiser’s 
rule should only be done as a starting point (if at all) when generating your factor 
model.

•	 Parallel analysis: Most accurate option for determining the number of factors 
to retain. Decisions on the number of factors to retain are based on statistical 
analysis, comparing the eigenvalues from the original data to the eigenvalues of 
randomly generated data.

Number of 
Variables per 
Factor

Review the number of variables per factor:
•	 Minimum: 3 per factor

Factor Rotation Determine how to rotate the factors:
•	 Orthogonal (uncorrelated): varimax, quartimax, and equamax
•	 Oblique (correlated): direct oblimin and promax

Factor 
Loadings

Review factor loadings:
•	 Ideally, a variable will have a large factor loading for only one factor
•	 A ‘moderately rigorous’ recommendation: a variable should have a factor loading 

of at least .30 in order to be retained with that factor
°	 This rule should be applied only in models with samples > 80

9.1.2â•‡� Sample Size

Unlike traditional statistical procedures, there is not a power calculation to suggest 
appropriate sample size for factor analysis. What exists are a number of sample size 
recommendations for factor analysis that have been made throughout the years, with 
none reaching consensus as the absolute criterion that must be followed and all later 
being determined invalid (MacCallum, Widaman, Zhang,Â€& Hong, 1999). These rec-
ommendation are generally based on a subject-to-variable ratio (STV) or absolute 
sample size per number of cases (N).

Case or subject-to-variable ratio (STV) recommendations range from two times the 
number of cases (Kline, 1979) to five or more times the number of items with a case-
to-item ratio greater than or equal to 5 and a minimum of 100 cases, regardless of the 
case-to-item ratio (BryantÂ€& Yarnold, 1995; Suhr, 2006), more than 5 times the number 
of items to allow for missing data (Suhr, 2006), 10 times the number of items (Nunally, 
1978), and 51 more cases than the number of variables (LawleyÂ€& Maxwell, 1971);

Other criterion are based on an absolute number of cases (N), with 100 cases being 
the suggested bare minimum sample size (Gorsuch, 1983; MacCallum et al., 1999), at 
least 150–300 (tending toward 150 if items are not highly correlated) (HutchesonÂ€& 
Sofroniou, 1999), at least 200 (Guilford, 1954), at least 250 (Cattell, 1978), and a 
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sliding scale ranging from 100 to 1,000 (with 100Â€=Â€poor, 200Â€=Â€ fair, 300Â€=Â€good, 
500Â€=Â€very good, and 1,000 or greaterÂ€=Â€excellent) (ComreyÂ€& Lee, 1992).

All this to be said, many researchers today would likely agree that these recommen-
dation for STV and absolute number of cases are weak criteria to follow to estimate 
the sample size for EFA, and there is research to suggest the invalidity of these rules 
(MacCallum et al., 1999). What is more important is the factorability of the model, as 
seen through communalities (percent of variance in an variable that is explained jointly 
by all factors), the degree of overdetermination (ratio of factors to variables), the size of 
the factor loading, and general model fit. Simulation research suggests that estimating 
factor structure is achievable, even with small sample sizes (particularly N > 20), given 
the following conditions are met: (a) high communalities (approximately .8 to .9),  
(b) small number of expected factors to be retained (2 to 4), and (c) low model error 
(which is likely evidenced in situations where communalities are high; RMSRÂ€=Â€.00 to 
.06) (PreacherÂ€& MacCallum, 2002). Other simulation research has shown that factors 
with four or more variables with factor loadings of .60 or greater are interpretable 
regardless of the sample size (GuadagnoliÂ€& Velicer, 1988). Solutions with lower fac-
tor loadings (.40) can still be interpreted if the number of cases is at least 150 and the 
number of variables per factor is larger (> 10) (GuadagnoliÂ€& Velicer, 1988).

The take-home message for sample size with EFA is this: Do not adhere to a recom-
mendation criterion for STV or absolute number of cases. Rather, design your study 
so that you collect the largest sample size that resources will allow. In some cases, this 
may mean that the sample size will be unnecessarily small. In those instances—and 
all others, as a matter of fact—be prepared to defend your sample size using previous 
empirical research, such as the simulation research presented here. And if you are a 
researcher so inclined to study methodological issues, this is an area ripe for continued 
examination.

9.1.3â•‡� Power

There are no power calculations to suggest appropriate sample size for exploratory 
factor analysis given a priori or post hoc power. What exists are a number of sample 
size recommendations as presented previously.

9.1.4â•‡� Effect Size

Factor analytic solutions, in and of themselves, do not produce effect size results. Once 
composite variables are created based on the factor analytic solutions and then those com-
posite variables are applied in an inferential procedure, effect sizes can then be generated.

9.1.5â•‡� Assumptions

As with most multivariate statistical procedures, there are a number of assumptions  
that must be considered with factor analysis, either EFA or PCA. These include  
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(a) independence, (b) linearity, (c) absence of outliers (both bivariate and multivariate) 
in cases and variables, and (d) lack of extreme multicollinearity and singularity. As pre-
viously discussed, a condition required for conventional factor analysis is continuous 
data (assuming the factor analytic procedure is computed from a Pearson correlation, 
as we will assume in this chapter). AÂ€large sample size is not necessarily required (as 
detailed previously) but may be helpful depending on the factor model. Factor analysis 
is actually robust to violations of the assumption of normality and normality is really 
not applicable in EFA as it is with many other multivariate procedures. The only excep-
tion to this is in the situation where tests of inference are used to determine the number 
of factors to retain (e.g., when using ML estimation), and in this case, multivariate 
normality is an assumption. Examination of univariate normality, which is not overly 
sensitive as are multivariate normality tests, can be done through examination of skew-
ness and kurtosis, formal tests of normality, and plots (e.g., Q-Q plots). In terms of 
multivariate normality, a macro in SPSS (DeCarlo, 1997) (illustrated with MANOVA 
in chapterÂ€4) can be used to examine a number of multivariate normality indices that 
include (a) multivariate kurtosis (Mardia, 1970), (b) multivariate skewness and kurto-
sis based on Small’s (1980) multivariate extension of univariate skewness and kurtosis 
(Looney, 1995), (c) multivariate normality omnibus test (Looney, 1995), (d) largest 
squared and plot of squared Mahalanobis distance, and (e) critical values for hypoth-
esis test for a single multivariate outlier using Mahalanobis distance (Penny, 1996).

9.1.5.1â•‡�I ndependence

The first assumption is concerned with independence of the observations. Violations 
of this assumption can detrimentally impact standard error values and thus any result-
ing hypothesis tests. Testing for this assumption is a bit nebulous in exploratory factor 
analysis, as there are no independent and dependent variables that allow for this type 
of examination. In the absence of statistical evidence, we will rely on theoretical evi-
dence: If the units have been randomly sampled from a population, there is evidence 
that the assumption of independence has been met.

9.1.5.2â•‡�L inearity

As you recall, factor analysis uses relationships among the variables as the basis for 
determining factors with conventional factor analysis doing so via a Pearson correlation 
matrix. Therefore, it is assumed there is a linear relationship among the variables. Bivari-
ate scatterplots can be examined to determine the extent to which this assumption is held.

9.1.5.3â•‡�A bsence of Outliers in Cases and Variables

Outliers in factor analysis operate in an unfavorable fashion, just as they do in other 
procedures. One or more outlying cases (either univariate or multivariate) can have 
undue and unwanted influence on the factor model. In addition to the ways we’ve 
screened for outliers in previous procedures (e.g., boxplots), they can also be screened 
by reviewing standard scores of the variables. Standardized scores with absolute 



380  â†œæ¸€å±®  â†œæ¸€å±® 	E xploratory Factor Analysis

values of 3.29 or greater (which equates to values more than 3–1/4 standard deviation 
units from the mean; about .05% of cases are above and below this point in a stanÂ�
dardized normal distribution) should be flagged as outliers. Multivariate outliers can 
be determined by Mahalanobis distance values, which can be calculated using multiple 
regression, discriminant analysis, or logistic regression (or via simple matrix algebra, 
without generating other analyses). Multivariate outliers are evidenced by statistically 
significant Mahalanobis distance scores (alphaÂ€=Â€.001 if you tend toward the liberal 
edge, which is appropriate with EFA), evaluated using a chi-square distribution with 
degrees of freedom equal to the number of variables. To generate Mahalanobis dis-
tance, apply all the variables as independent variables with the dependent variable 
being a binary variable coded 1 for potential outliers and 0 for all other variables. The 
process for examining outliers is therefore to look for univariate outliers first. If any 
are detected, then screen for multivariate outliers.

In factor analysis, it is also possible to have outlying variables, that is, variables that 
are unrelated to others in the factor model. These outlying variables can be determined 
by reviewing the following: (a) squared multiple correlations with all other variables 
and (b) weak correlations with the factors that are identified in the factor analytic 
model. Outlying variables that are identified can be disregarded.

9.1.5.4â•‡�L ack of Extreme Multicollinearity and Singularity

In other procedures, we have discussed how multicollinearity can be problematic 
because it makes the matrix inversion process unstable. As you recall, multicollinear-
ity is a very strong linear relationship between two or more of the predictors. You may 
be wondering how it is the case that this can be problematic in factor analysis, as one of 
the indices we use to determine the ability to factor analyze is the relationship between 
variables and there is no matrix inversion. In factor analysis, we are concerned with 
severe and extreme multicollinearity, which can be problematic in factor analysis. Sin-
gularity is a special case of multicollinearity; it is perfect multicollinearity and occurs 
when two or more variables perfectly predict and are therefore perfectly redundant. 
This can occur in factor analysis (just as it did in multiple regression), for example, 
when a composite variable as well as its component variables are used as predictors in 
the same factor analytic model.

How do we detect violations of this assumption? Remember that we are looking only 
for extreme multicollinearity, so we will limit our detection methods quite a bit as com-
pared to our data examination in multiple regression. For EFA, the simplest method is 
to conduct a series of multiple regression models, one regression model for each var-
iable where that variable is the dependent variable and all remaining variables are the 
independent variables. If any of the resultant Rk

2 values are close to one (greater than 
.9 is a good guideline to go by), then there may be an extreme multicollinearity prob-
lem. However, large R2 values may also be due to small sample sizes, so be cautious 
in interpreting cases where the number of cases is small. If the number of variables is 
greater than or equal to n, then perfect multicollinearity is a possibility.
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9.1.5.5â•‡� Concluding Thoughts on Assumptions

As mentioned in previous chapters, there is no rule stating that research that violates 
assumptions must be scrapped. However, researchers who face violations of assumptions 
must handle these situations on a case-by-case basis, considering both the goal of the 
analyses and the extent to which the assumptions were violated and the resulting effect 
of violation. It is also important that researchers present the evidence found, along with 
justification for decisions that were made. The assumptions are summarized in TableÂ€9.1.

9.2â•‡� MATHEMATICAL INTRODUCTION SNAPSHOT

Now that we understand the conditions and decision points, there are a few additional 
foundational topics related to the underlying mathematics of exploratory factor analysis 
that may be helpful with which to become acquainted. Note that this is not meant to be 
a primer on the mathematical proofs nor is it meant to serve as a foundation for which 
hand calculations can be made. Rather, it is meant to provide a bit more of the mathe-
matical representation for those who are interested in delving deeper into this aspect.

Using matrix algebra, we can express the correlational structure of the common factor 
model as follows:

P DT= +ΛΦΛ Ψ

In this equation, P refers to the population correlation matrix of observed variables. 
The factor-loading matrix, Λ  (lambda), represents the linear influence strength and 
direction of the latent or component factors on the observed variables. In this matrix, 
the columns represent the factors and the rows represent the observed variables. Thus, 
Λ3 1⋅ refers to the factor loading for (the value of which is the path between) the effect 
or influence of common factor one on observed variable three.

The transpose of the factor-loading matrix is represented by lambda superscript T, ΛT .  
As reviewed in the material on matrix algebra in the appendix, transposing means that 

■■ TABLE 9.1

Assumptions and Violation of Assumptions: Exploratory Factor Analysis

Assumption Effect of Assumption Violation

Independence Influences standard errors of the model and thus hypothesis tests

Linearity Reduces interpretability of the factor analytic solution

Absence of outlying 
cases and variables

Exerts undue influence on and distorts the factor analytic solution

Lack of extreme 
multi-collinearity

Reduces ability to separate effects of variables

Multivariate normality Minimal effect when violated with exceptions including (a) when hypothesis 
testing is conducted as part of the EFA, (b) when maximum likelihood is used to 
estimate the factor model, and (c) with small sample sizes
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what was originally in the rows now become columns (and what was originally in the 
columns now become rows).

The covariance matrix among the unique factors is represented by DΨ  (the subscript 
for which is psi). The diagonals of this matrix are the variances of the unique factors. 
The off-diagonals are the covariances and are zero when orthogonality is assumed.

The correlation matrix between the factors is represented by Φ  (phi). When orthogo-
nality of errors is assumed (i.e., the factors are uncorrelated), the population correla-
tion matrix is simply: P DT= +ΛΛ Ψ .

Because our interest is in the conceptual understanding of EFA, we’ll end our math-
ematical discussion at this point. The summary of the underlying mathematics of 
EFA was drawn from Fabrigar and Wegener (2012), which provides a very accessible 
account. Readers interested in learning more of the mathematics are referred to that 
source, among others.

■■ TABLE 9.2

Factor-Loading Matrix Example

Factor Matrixa

Factor

[Common Factor 1] [Common Factor 2]

Index of use of numeracy skills at home Λ11⋅ =  .843 Λ12⋅ = −.175

Index of use of ICT skills at home Λ21⋅ =  .673 Λ2 2⋅ =  .066

Index of use of reading skills at home Λ31⋅ =  .528 Λ3 2⋅ =  .153

Index of use of numeracy skills at work Λ41⋅ =  .330 Λ4 2⋅ =  .086

Index of readiness to learn Λ51⋅ =  .412 Λ5 2⋅ =  .504

Index of use of task discretion at work Λ61⋅ =  .059 Λ6 2⋅ =  .311

Index of learning at work Λ71⋅ =  .062 Λ7 2⋅ =  .300

Index of use of planning skills at work Λ81⋅ = −.183 Λ8 2⋅ =  .296

Extraction Method: Maximum Likelihood.
a. Two factors extracted. Six iterations required.

■■ TABLE 9.3

Example of Correlation Matrix of Common Factors

Factor Correlation Matrix

Factor [Common Factor 1] [Common Factor 2]

1 1.000

2 Φ21⋅ =  .165 1.000

Extraction Method: Maximum Likelihood.
Rotation Method: Promax with Kaiser Normalization.
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9.3â•‡� COMPUTING EFA USING SPSS

As we know by now, conventional factor analysis requires continuous data. There are 
many situations, however, where EFA of ordinal survey (e.g., Likert) items is desirable. 
Thus, our use of SPSS will first illustrate EFA with continuous data, and this will be fol-
lowed by an illustration of the use of parallel analysis for factor retention. Next, we will 
illustrate how to use one of the SPSS add-ons for conducting EFA with ordinal data.

9.3.1â•‡� Computing EFA With Continuous Data Using SPSS

Next, we consider SPSS for conducting exploratory factor analysis with data that is 
continuous in scale (should you have only ordinal items, please see the following SPSS 
section, “Computing EFA With Ordinal Data”). Before we conduct the analysis, let us 
talk about the data. The data we are using is the 2013 Survey of Adult Skills (http://
www.oecd.org/site/piaac/surveyofadultskills.htm), available through the Organisation 
for Economic Co-operation and Development (OECD). Thank you to OECD for mak-
ing this data publicly available.

The Survey of Adult Skills, conducted in 33 countries, is part of the Programme for 
the International Assessment of Adult Competencies (PIAAC), and the first results 
from the survey were released in 2013. Measured in the survey are “key cognitive and 
workplace skills needed for individuals to participate in society and for economies to 
prosper” (see http://www.oecd.org/site/piaac/surveyofadultskills.htm). Adults ages 16 
to 65 were interviewed in their homes, with 5,000 individuals from each country partic-
ipating. It is important to note that the Survey of Adult Skills is a complex sample (i.e., 
not a simple random sample). Although each country was allowed to create their own 
sampling design and selection plan (for example, some countries oversampled some 
groups of individuals), it had to adhere to technical standards published by the PIAAC. 
For example, the U.S. sampling design was a four-stage stratified probability propor-
tional to size design. If you access the full dataset, you will find the last few variables 
are various weights as well as stratum and unit variables. We won’t get into the tech-
nical aspects of this, but when the data are analyzed to adjust for the sampling design 
(including nonsimple random sampling procedure and disproportionate sampling), the 
end results are then representative of the intended population. The purpose of the text is 
not to serve as a primer for understanding complex samples, and thus readers interested 
in learning more about complex survey designs are referred to any number of excellent 
resources (Hahs-Vaughn, 2005; Hahs-Vaughn, McWayne, Bulotskey-Shearer, Wen,Â€& 
Faria, 2011a, 2011b; Lee, Forthofer,Â€& Lorimor, 1989; Skinner, Holt,Â€& Smith, 1989). 
Additionally, so as to not complicate matters any more than necessary (learning EFA is 
generally complicated enough!), the applications in this textbook do not illustrate how 
to adjust for the complex sample design. As such, the results that we see should not be 
interpreted to represent any larger population but only that select sample of individuals 
who actually completed the survey. IÂ€want to stress that the reason why the sampling 
design has not been illustrated in the textbook applications is because the point of this 
section of the textbook is to illustrate how to use statistical software to generate various 

http://www.oecd.org/site/piaac/surveyofadultskills.htm
http://www.oecd.org/site/piaac/surveyofadultskills.htm
http://www.oecd.org/site/piaac/surveyofadultskills.htm
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procedures and how to interpret the output and not to ensure the results are representa-
tive of the intended population. Please do not let this discount or diminish the need to 
apply this critical step in your own analyses when using complex survey data, as quite 
a large body of research exists that describes the importance of effectively analyzing 
complex samples and provides evidence of biased results when the complex sample 
design is not addressed in the analyses (Hahs-Vaughn, 2005, 2006a, 2006b; Hahs-
Vaughn et al., 2011a, 2011b; KishÂ€& Frankel, 1973, 1974; KornÂ€& Graubard, 1995; Lee 
et al., 1989; Lumley, 2004; Pfeffermann, 1993; Skinner et al., 1989).

Now, let’s review the data. We are using the PIAAC_EFA.sav file. This is data from 
the U.S., and the data file has been delimited to include only individuals who were 
between the ages of 25–29 [AGEG5LFSÂ€=Â€3], who were employed or participated in 
education or training during the 12 months prior to completing the survey [NEETÂ€=Â€0], 
and who reported having ‘above high school’ education [B_Q01a_TÂ€=Â€3] (nÂ€=Â€288). 
The size of this sample is more than sufficient to generate EFA, but at the same time 
small enough to work with for readers who may be using a version of SPSS that limits 
the number of cases. Additionally, it creates at least an intuitively homogenous sam-
ple that would be anticipated to respond similarly on the items. (Note: The complete 
PIAAC Survey of Adult Skills data file, which includes 5,010 cases, is available from 
the textbook’s companion website and is titled PIAAC_SurveyOfAdultSkills.sav.)

Before we run the data, it’s always important to examine frequency distributions of 
the variables that will be used in the model to assess missing data, potential data entry 
problems, and similar. With this data, we have some missing data (it has already been 
coded by the survey collectors as 9996), and thus I’ve taken the liberty to perform 
listwise deletion on the missing items (resulting in nÂ€=Â€191); however, the remaining 
variables in the data file have been left as is so that you may practice your data cleaning 
skills in working with ‘real data.’

Let’s look at the data. For the EFA illustration, we’ll be working with 13 indices (vari-
ables 1–13 in your SPSS file), each of which is measured on a continuous scale.

â•‡ 1.	 Index of use of numeracy skills at home (basic and advanced—derived)
â•‡ 2.	 Index of use of numeracy skills at work (basic and advanced—derived)
â•‡ 3.	 Index of use of ICT skills at home (derived)
â•‡ 4.	 Index of use of reading skills at home (prose and document texts—derived)
â•‡ 5.	 Index of use of task discretion at work (derived)
â•‡ 6.	 Index of learning at work (derived)
â•‡ 7.	 Index of use of planning skills at work (derived)
â•‡ 8.	 Index of readiness to learn (derived)
â•‡ 9.	 Index of use of ICT skills at work (derived)
10.	 Index of use of influencing skills at work (derived)
11.	 Index of use of reading skills at work (prose and document texts—derived)
12.	 Index of use of writing skills at work (derived)
13.	 Index of use of writing skills at home (derived)
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The first 13 variables are the indices for EFA. The next three variables in the SPSS 
dataset were used to delimit the sample. AÂ€few variables used for data screening are 
included (outlier and MAH_1, Mahalanobis distance, which we will discuss as we 
test assumptions). This is followed by three variables in the dataset that represent the 
country and participant ID variables. I’ve left those in the data file just in case you 
are interested in merging variables from the full dataset with this smaller, delimited 
file. Each row in the data set still represents one individual. As seen in the screenshot 
below, the SPSS data is in the form of multiple columns that represent the variables on 
which the respondents were measured. For the EFA illustration, we will work with the 
13 continuous index measures.

Step 1. To conduct exploratory factor analysis, go to “Analyze” in the top pull-down 
menu, then select “Dimension Reduction,” and then select “Factor.” Following the 
screenshot below (Step 1) produces the “Factor Analysis” dialog box.

Step 2. Click the 13 index measures and move into the “Variables” box by clicking 
the arrow button (see screenshot Step 2).
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Step 3. From the Factor Analysis dialog box (see screenshot Step 2), clicking on 
“Descriptives” will provide the option to compute various descriptive statistics (see 
screenshot Step 3). From the Factor Analysis: Descriptives dialog box, place a check-
mark in all the boxes. Click on “Continue” to return to the Factor Analysis dialog box.
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Step 4a. From the Factor Analysis dialog box (see screenshot Step 2), clicking on 
“Extraction” will provide the option to select various options related extraction meth-
ods and what is displayed (see screenshot Step 4a). Using the pull-down menu, click 
on “Maximum likelihood.” Recall that we discussed how solutions from the different 
extraction methods will converge in situations where you have a large number of cases 
and variables and communality estimates that are similar. We also stated that evidence 
of the stability of the factor solution can be seen in cases where there is convergence of 
factor analytic solutions when using different extraction methods. Thus, you may want 
to select a small handful of estimation techniques to test the stability of your factor 
analytic model under different estimation methods, although for this illustration, we 
will apply only one.

Step 4b. Also from the Factor Analysis: Extraction dialog box, place a checkmark 
in the box next to the following: (1) unrotated factor solution and (2) scree plot (see 
screenshot Step 4b). Under the heading for ‘Extract,’ click the radio button for ‘based 
on eigenvalue’ and then enter 1 in the box for ‘eigenvalues greater than:’. Recall 
that the application of Kaiser’s rule consistently (often substantially) overestimates the 
number of factors (ZwickÂ€& Velicer, 1982, 1986), thus we won’t base our factor solu-
tion interpretation on it as an important piece of the results. Knowing that it usually 
overestimates the number of factors to retain, however, it does give us a starting point 
from which to work. Depending on the solution, we may choose to rerun the model and 
base the number of factors to extract on a ‘fixed number of factors.’ Leave the default 
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setting for ‘Maximum Iterations for Convergence’ at 25. Click on “Continue” to return 
to the Factor Analysis dialog box.

Step 5. From the Factor Analysis dialog box (see screenshot Step 2), clicking on 
“Rotation” will provide the option to select various options related to rotation meth-
ods. Place a checkmark in the box next to the following: (1) rotated solution and  
(2) loading plot(s) (see screenshot Step 5). In terms of the factor-loading plot, in the 
event that only one factor is extracted, no plot will be displayed. When two factors 
are extracted, a two-dimensional plot will be displayed. When three or more factors 
are extracted, a three-dimensional factor-loading plot of only the first three factors 
extracted is displayed. Under the heading for ‘Method,’ click the radio button for ‘Pro-
max’ and then enter 4 in the box for ‘Kappa’ (which is the default). (Other values 
of kappa can be introduced, with the ideal kappa value being one that results in the 
simplest factor structure with low correlations among the factors; higher kappa values 
lead to larger correlations among factor and simpler loading structures. The default of 
4 is based on previous research which suggests this value produces a generally good 
solution (HendricksonÂ€& White, 1964).) Change the default setting for ‘Maximum Iter-
ations for Convergence’ to 1000. The number of iterations to convergence simply 
defines how many iterations the algorithm can take to perform the rotation. It is likely 
the case that 1000 is overkill, but it doesn’t hurt to set it at a large value just in case it’s 
required. Click on “Continue” to return to the Factor Analysis dialog box.
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Step 6. From the Factor Analysis dialog box (see screenshot Step 2), clicking on 
“Scores” will provide the option to save the variables created as composite scores 
and to display the factor score coefficient matrix (see screenshot Step 6). Many 
times, researchers select to skip this step and use methods such as the mean sum 
(i.e., adding all the items together and dividing by the number of items) as a method 
to create the composite score. If you do choose to allow the software to create your 
composite score, there are three methods from which to choose to estimate the 
factor score coefficients. The regression method produces factor scores that have a 
mean of 0 and a variance that equals the squared multiple correlation between the 
estimated factor scores and the true factor values. The factor scores estimated from 
the regression method may be correlated even if the factors are orthogonal. The 
Bartlett score produces factor scores that have a mean of 0. This method minimizes 
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the sum of squares of the unique factors over the range of variables. The Anderson- 
Rubin method is a modified Bartlett method that produces factor scores with a 
mean of 0 and standard deviation of 1 and that maintains orthogonality of the esti-
mated factors. Thus, the scores produced are uncorrelated. At this time, do not 
make any selections on this screen, as we will adhere to the mean sum method for 
creating a composite score. Click on “Continue” to return to the Factor Analysis  
dialog box.

Step 7. From the Factor Analysis dialog box (see screenshot Step 2), clicking on 
“Options” will bring up the dialog box that allows various options for dealing with 
missing values, as well as options for displaying the coefficients (see screenshot  
Step 7). We will leave the default setting for the Missing Values as ‘exclude cases 
listwise.’ For our purposes, because we have already dealt with missing values, which 
selection is made for missing values is moot. As you conduct your own research, 
however, should you have missing values, it should be dealt with prior to generating 
the factor analysis and not within the EFA, as none of the three options provided are 
acceptable means for which to address missing values (the exception may be if you 
have an extremely small percentage of missing, such as 5% or less). Under the heading 
for Coefficient Display Format, place a checkmark in the box for ‘sorted by size.’ This 
will make it much easier to see the clusters of variables produced in the factor solution, 
as it groups the items by factor in descending order of factor-loading size. Then click 
on “Continue” to return to the Factor Analysis dialog box. From the “Factor Analysis” 
dialog box, click on “OK” to generate the output.

Interpreting the output. Annotated results are presented in TableÂ€9.4.



■■ TABLE 9.4

SPSS Results for the Exploratory Factor Analysis Example



■■ TABLE 9.4â•‡ (continued)

SPSS Results for the Exploratory Factor Analysis Example



■■ TABLE 9.4â•‡ (continued)

SPSS Results for the Exploratory Factor Analysis Example



■■ TABLE 9.4â•‡ (continued)

SPSS Results for the Exploratory Factor Analysis Example



■■ TABLE 9.4â•‡ (continued)

SPSS Results for the Exploratory Factor Analysis Example



■■ TABLE 9.4â•‡ (continued)

SPSS Results for the Exploratory Factor Analysis Example



■■ TABLE 9.4â•‡ (continued)

SPSS Results for the Exploratory Factor Analysis Example

Interpreting the scree plot is subjective, 
however look for the clearest delineation 
where the line goes from being diagonal

 to being horizontal. 
Then, to determine the number of factors 

suggested by the scree plot, count the
 number of straight lines (not dots), 
stopping at the point where the line 

becomes more horizontal than diagonal. 

NOTE! 
Remember that there is a fair amount of subjectivity 
in interpreting the scree plot. With this graph, there 

appear to clearly be two factors with much less 
variance accounted for by factors three through five.
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■■ TABLE 9.4â•‡ (continued)

SPSS Results for the Exploratory Factor Analysis Example



■■ TABLE 9.4â•‡ (continued)

SPSS Results for the Exploratory Factor Analysis Example
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■■ TABLE 9.4â•‡ (continued)

SPSS Results for the Exploratory Factor Analysis Example

This plot shows the factors in rotated, 
two-dimensional space (given that 

two factors were extracted). We can 
see how the variables that load the 

strongest on each factor tend to 
clump together. 
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9.3.1.1â•‡�S PSS Parallel Analysis for Determining Factor Retention

Next, we consider SPSS for conducting parallel analysis (PA). When you run the par-
allel analysis program, it is important that the data file is open so that the program will 
recognize that data file as the one with which to generate the PA. We will continue to 
work with the PIAAC_EFA.sav dataset.

PA Step 1. As mentioned previously, this is not available in the point-and-click user 
interface but can easily be performed with syntax available from O’Connor (2000). 
[Additional annotated code, along with syntax to generate artificial raw data that may 
be helpful for getting a feel for how it works, is accessible online at https://people.
ok.ubc.ca/brioconn/nfactors/rawpar.sps.] To open a new syntax file, click on “File” 
then “New” then “Syntax.” Following the screenshot below (see screenshot EFA Paral-
lel Analysis: Step 1) produces the “Syntax Editor.”

Step 2. It is most helpful to access an electronic copy of the article or the supplemen-
tary online material (see https://people.ok.ubc.ca/brioconn/nfactors/rawpar.sps) so that 
the syntax can be copied and pasted directly into the SPSS syntax viewer (however, it 
has also been provided in TableÂ€9.5). When the syntax is copied into the syntax editor, 
the code that needs your input will clearly be displayed (see screenshot EFA Parallel 
Analysis: Step 2). These include the following:

■■ The GET line tells SPSS that the file currently open is the one that should be used 
to generate the parallel analysis. For ease, the dataset we are using, PIAAC_EFA 
.sav, is organized so that the eight variables we will factor analyze are grouped 
together. In this instance, the GET syntax is GET raw / FILEÂ€=Â€* / missing= 
omit / VAR = NUMHOME to READYTOLEARN. Specifying FILEÂ€ =Â€ * tells the 
program to read the SPSS data file that is open (thus make sure there is only 
one dataset open when you run the program, and the one that is open is the one 
from which you want the parallel analysis generated). The VAR = NUMHOME to 
READYTOLEARN. tells the program only to generate the parallel analysis on the 
variables within this range (in this illustration, it happens to be the first eight var-
iables in the data file).

https://people.ok.ubc.ca/brioconn/nfactors/rawpar.sps
https://people.ok.ubc.ca/brioconn/nfactors/rawpar.sps
https://people.ok.ubc.ca/brioconn/nfactors/rawpar.sps
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■■ The number of parallel datasets to compute needs to be defined (100 is the default 
and is an appropriate starting place): compute ndatsetsÂ€=Â€100.

■■ The percentile must be specified (95th is common): compute percentÂ€=Â€95.
■■ The kind of parallel analysis to compute must be specified with 1 referring to PCA 

and 2 referring to principal axis/common factor analysis (which is what we will 
generate in this illustration): compute kind = 2.

■■ The type of distribution must be specified with 1 being normally distributed and 
2 being permutations of the raw data: compute randtypeÂ€=Â€1. It is important to 
note that the distributions of the observed variables remain the same during the 
parallel analysis procedure. As noted by O’Connor, “Permutations of the raw 
data set are thus highly accurate and most relevant, especially in cases where the 
raw data are not normally distributed or when they do not meet the assumption 
of multivariate normality” (see https://people.ok.ubc.ca/brioconn/nfactors/raw-
par.sps). O’Connor recommends specifying normally distributed data first (i.e., 
compute randtypeÂ€=Â€1.) to get a general idea of the number of factors that the 
parallel analysis suggests retaining. Then specify distributions as permutations 
of the raw data (i.e., compute randtypeÂ€=Â€2.) with a small number of datasets 
(e.g., 100) to see how long the program takes to run. Assuming the time for 
running the program is doable, then run the parallel analysis program with the 
number of parallel data sets desired for your analyses (with 1,000 generally 
being sufficient).

https://people.ok.ubc.ca/brioconn/nfactors/rawpar.sps
https://people.ok.ubc.ca/brioconn/nfactors/rawpar.sps


* principal components analysis & random normal data generation.

do if (kind = 1 and randtype = 1).

compute nm1 = 1 / (ncases-1).

compute vcv = nm1 * (sscp(raw) - ((t(csum(raw))*csum(raw))/ncases)).

compute d = inv(mdiag(sqrt(diag(vcv)))).

compute realeval = eval(d * vcv * d).

compute evals = make(nvars,ndatsets,-9999).

loop #nds = 1 to ndatsets.

compute x = sqrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &*

cos(6.283185 * uniform(ncases,nvars) ).

compute vcv = nm1 * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).

compute d = inv(mdiag(sqrt(diag(vcv)))).

compute evals(:,#nds) = eval(d * vcv * d).

end loop.

end if.

* principal components analysis & raw data permutation.

do if (kind = 1 and randtype = 2).

compute nm1 = 1 / (ncases-1).

compute vcv = nm1 * (sscp(raw) - ((t(csum(raw))*csum(raw))/ncases)).

compute d = inv(mdiag(sqrt(diag(vcv)))).

compute realeval = eval(d * vcv * d).

compute evals = make(nvars,ndatsets,-9999).

loop #nds = 1 to ndatsets.

compute x = raw.

loop #c = 1 to nvars.

loop #r = 1 to (ncases -1).

compute k = trunc( (ncases - #r + 1) * uniform(1,1) + 1 )  + #r - 1.

compute d = x(#r,#c).

compute x(#r,#c) = x(k,#c).

compute x(k,#c) = d.

end loop.

end loop.

compute vcv = nm1 * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).

■■ TABLE 9.5

SPSS Syntax for Generating Parallel Analysis



* principal components analysis & random normal data generation.

do if (kind = 1 and randtype = 1).

compute nm1 = 1 / (ncases-1).

compute vcv = nm1 * (sscp(raw) - ((t(csum(raw))*csum(raw))/ncases)).

compute d = inv(mdiag(sqrt(diag(vcv)))).

compute realeval = eval(d * vcv * d).

compute evals = make(nvars,ndatsets,-9999).

loop #nds = 1 to ndatsets.

compute x = sqrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &*

cos(6.283185 * uniform(ncases,nvars) ).

compute vcv = nm1 * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).

compute d = inv(mdiag(sqrt(diag(vcv)))).

compute evals(:,#nds) = eval(d * vcv * d).

end loop.

end if.

* principal components analysis & raw data permutation.

do if (kind = 1 and randtype = 2).

compute nm1 = 1 / (ncases-1).

compute vcv = nm1 * (sscp(raw) - ((t(csum(raw))*csum(raw))/ncases)).

compute d = inv(mdiag(sqrt(diag(vcv)))).

compute realeval = eval(d * vcv * d).

compute evals = make(nvars,ndatsets,-9999).

loop #nds = 1 to ndatsets.

compute x = raw.

loop #c = 1 to nvars.

loop #r = 1 to (ncases -1).

compute k = trunc( (ncases - #r + 1) * uniform(1,1) + 1 )  + #r - 1.

compute d = x(#r,#c).

compute x(#r,#c) = x(k,#c).

compute x(k,#c) = d.

end loop.

end loop.

compute vcv = nm1 * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).

■■ TABLE 9.5â•‡ (continued)

SPSS Syntax for Generating Parallel Analysis



compute d = inv(mdiag(sqrt(diag(vcv)))).

compute evals(:,#nds) = eval(d * vcv * d).

end loop.

end if.

* PAF/common factor analysis & random normal data generation.

do if (kind = 2 and randtype = 1).

compute nm1 = 1 / (ncases-1).

compute vcv = nm1 * (sscp(raw) - ((t(csum(raw))*csum(raw))/ncases)).

compute d = inv(mdiag(sqrt(diag(vcv)))).

compute cr = (d * vcv * d).

compute smc = 1 - (1 &/ diag(inv(cr)) ).

call setdiag(cr,smc).

compute realeval = eval(cr).

compute evals = make(nvars,ndatsets,-9999).

compute nm1 = 1 / (ncases-1).

loop #nds = 1 to ndatsets.

compute x = sqrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &*

cos(6.283185 * uniform(ncases,nvars) ).

compute vcv = nm1 * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).

compute d = inv(mdiag(sqrt(diag(vcv)))).

compute r = d * vcv * d.

compute smc = 1 - (1 &/ diag(inv(r)) ).

call setdiag(r,smc).

compute evals(:,#nds) = eval(r).

end loop.

end if.

* PAF/common factor analysis & raw data permutation.

do if (kind = 2 and randtype = 2).

compute nm1 = 1 / (ncases-1).

compute vcv = nm1 * (sscp(raw) - ((t(csum(raw))*csum(raw))/ncases)).

compute d = inv(mdiag(sqrt(diag(vcv)))).

compute cr = (d * vcv * d).

■■ TABLE 9.5â•‡ (continued)

SPSS Syntax for Generating Parallel Analysis



compute smc = 1 - (1 &/ diag(inv(cr)) ).

call setdiag(cr,smc).

compute realeval = eval(cr).

compute evals = make(nvars,ndatsets,-9999).

compute nm1 = 1 / (ncases-1).

loop #nds = 1 to ndatsets.

compute x = raw.

loop #c = 1 to nvars.

loop #r = 1 to (ncases -1).

compute k = trunc( (ncases - #r + 1) * uniform(1,1) + 1 )  + #r - 1.

compute d = x(#r,#c).

compute x(#r,#c) = x(k,#c).

compute x(k,#c) = d.

end loop.

end loop.

compute vcv = nm1 * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).

compute d = inv(mdiag(sqrt(diag(vcv)))).

compute r = d * vcv * d.

compute smc = 1 - (1 &/ diag(inv(r)) ).

call setdiag(r,smc).

compute evals(:,#nds) = eval(r).

end loop.

end if.

* identifying the eigenvalues corresponding to the desired percentile.

compute num = rnd((percent*ndatsets)/100).

compute results = { t(1:nvars), realeval, t(1:nvars), t(1:nvars) }.

loop #root = 1 to nvars.

compute ranks = rnkorder(evals(#root,:)).

loop #col = 1 to ndatsets.

do if (ranks(1,#col) = num).

compute results(#root,4) = evals(#root,#col).

break.

end if. Â€

■■ TABLE 9.5â•‡ (continued)

SPSS Syntax for Generating Parallel Analysis



end loop.

end loop.

compute results(:,3) = rsum(evals) / ndatsets.

print /title="PARALLEL ANALYSIS:".

do if (kind = 1 and randtype = 1).

print /title="Principal Components & Random Normal Data Generation".

else if (kind = 1 and randtype = 2).

print /title="Principal Components & Raw Data Permutation".

else if (kind = 2 and randtype = 1).

print /title="PAF/Common Factor Analysis & Random Normal Data Generation".

else if (kind = 2 and randtype = 2).

print /title="PAF/Common Factor Analysis & Raw Data Permutation".

end if.

compute specifs = {ncases; nvars; ndatsets; percent}.

print specifs /title="Specifications for this Run:"

/rlabels="Ncases" "Nvars" "Ndatsets" "Percent".

print results 

/title="Raw Data Eigenvalues, & Mean & Percentile Random Data Eigenvalues"

/clabels="Root" "Raw Data" "Means" "Prcntyle"  /format "f12.6".

do if   (kind = 2).

print / space = 1.

print /title="Warning: Parallel analyses of adjusted correlation matrices".

print /title="eg, with SMCs on the diagonal, tend to indicate more factors".

print /title="than warranted (Buja, A., & Eyuboglu, N., 1992, Remarks on 
parallel".

print /title="analysis. Multivariate Behavioral Research, 27, 509-540.).".

print /title="The eigenvalues for trivial, negligible factors in the real".

print /title="data commonly surpass corresponding random data eigenvalues".

print /title="for the same roots. The eigenvalues from parallel analyses".

print /title="can be used to determine the real data eigenvalues that are".

print /title="beyond chance, but additional procedures should then be used".

print /title="to trim trivial factors.".

print / space = 2.

■■ TABLE 9.5â•‡ (continued)

SPSS Syntax for Generating Parallel Analysis
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print /title="Principal components eigenvalues are often used to determine".

print /title="the number of common factors. This is the default in most".

print /title="statistical software packages, and it is the primary practice".

print /title="in the literature. It is also the method used by many factor".

print /title="analysis experts, including Cattell, who often examined".

print /title="principal components eigenvalues in his scree plots to 
determine".

print /title="the number of common factors. But others believe this common".

print /title="practice is wrong. Principal components eigenvalues are based".

print /title="on all of the variance in correlation matrices, including both".

print /title="the variance that is shared among variables and the variances".

print /title="that are unique to the variables. In contrast, principal".

print /title="axis eigenvalues are based solely on the shared variance".

print /title="among the variables. The two procedures are qualitatively".

print /title="different. Some therefore claim that the eigenvalues from one".

print /title="extraction method should not be used to determine".

print /title="the number of factors for the other extraction method.".

print /title="The issue remains neglected and unsettled.".

end if.

compute root      = results(:,1).

compute rawdata = results(:,2).

compute percntyl = results(:,4).

save results /outfile= 'screedata.sav' / var=root rawdata means percntyl .

end matrix.

■■ TABLE 9.5â•‡ (continued)

SPSS Syntax for Generating Parallel Analysis

Step 3. Now that the syntax is created (see PA_PIAAC_n191.sps), run the program. 
For this data, we first generate 100 datasets using normally distributed data. Then we 
generate 1000 datasets using permutations of the raw data.

Interpreting the PA output. Annotated results are presented in TablesÂ€9.6 and 9.7. 
More specifically, in TableÂ€9.6 the results were generated using 100 datasets (compute 
ndatsetsÂ€=Â€100.) with normally distributed random data (compute randtypeÂ€=Â€1.). 
TableÂ€9.7 results were generated using 1000 datasets (compute ndatsetsÂ€=Â€1000.) 
with normally distributed random data (compute randtypeÂ€=Â€2.). In both cases, we 
arrive at the same conclusion—two factors should be retained.



■■ TABLE 9.6

SPSS Parallel Analysis Results for the Exploratory Factor Analysis Example: 100 Datasets with 
Normally Distributed Random Data



■■ TABLE 9.6â•‡ (continued)

SPSS Parallel Analysis Results for the Exploratory Factor Analysis Example: 100 Datasets with 
Normally Distributed Random Data



■■ TABLE 9.7

SPSS Parallel Analysis Results for the Exploratory Factor Analysis Example: 1000 Datasets with 
Permutations of the Raw Data
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9.3.2â•‡� Computing EFA With Ordinal Data Using SPSS

Next we consider an SPSS add-on, categorical principal components analysis (CAT-
PCA), for conducting exploratory factor analysis in the case where our data is ordinal. 
IÂ€felt it critically important to provide this illustration in the textbook for two reasons: 
(1) there is an abundance of data collected and secondary data available that is ordinal 
in scale—specifically Likert items that measure attitude, perceptions, etc.—as well 
as nominal (which can also be handled with CATPCA); and (2) yet few resources 
are available that transparently help researchers select and use an appropriate EFA 
procedure and thereby avoid the pitfall of applying conventional EFA techniques to 
data for which it is really not appropriate. As an optimal scaling approach, nonlinear 
relationships between categorical variables can be modeled within CATPCA via opti-
mal quantification in a specified dimension. Unfortunately, CATPCA is only available 
as an add-on with SPSS. Should you be renting a copy of SPSS, you likely have it. 
If you are accessing SPSS from an institution that purchases a finite number of SPSS 
licenses, you may or may not have it.

Before we conduct the analysis, let us talk about the data. The data we are using is the 
2010 Survey of Doctorate Recipients (SDR, http://www.nsf.gov/statistics/srvydoctor 
atework/), available through the National Science Foundation (NSF) (2010). Thank 
you to NSF for making this data publicly available. This is only one of many secondary 
data sources available through NSF as well as other federal and nonfederal agencies, 

■■ TABLE 9.7â•‡ (continued)

SPSS Parallel Analysis Results for the Exploratory Factor Analysis Example: 1000 Datasets with 
Permutations of the Raw Data

http://www.nsf.gov/statistics/srvydoctoratework/
http://www.nsf.gov/statistics/srvydoctoratework/
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and IÂ€encourage you to explore these extremely rich resources (particularly for multi-
variate research) for your own research.

First conducted in 1973, the SDR is a “longitudinal biennial survey that provides 
demographic and career history information about individuals with a research doctoral 
degree in a science, health, or engineering (SHE) field from a U.S. academic institu-
tion. The survey follows a sample of individuals with SHE doctorates throughout their 
careers from the year of their degree until age 76Â€.Â€.Â€.Â€Results are used to make deci-
sions related to the educational and occupational achievements and career movements 
of the nation’s doctoral scientists and engineers” (see http://www.nsf.gov/statistics/
srvydoctoratework/). It is important to note that the SDR is a complex sample (i.e., 
not a simple random sample). More specifically, it employs a stratified probability 
sampling design. As you will see in the dataset, the very last variable is a weight var-
iable. When this weight is applied to the analysis, the results are adjusted for unequal 
selection probabilities and nonresponse (which also includes respondents who could 
not be located or whose eligibility was unknown) and aligned with poststratification 
(http://www.nsf.gov/statistics/srvydoctoratework/). The end results are then represent-
ative of the intended population. As stated previously, the purpose of the text is not to 
serve as a primer for understanding complex samples, and thus readers interested in 
learning more about complex survey designs are referred to resources noted earlier in 
the chapter.

Now, let’s review the data. We are using the SDR2010_POSTDOC.sav file. This data 
file has been delimited to include only individuals who completed the SDR in 2010 
who were employed in a post-doctoral position during the week they responded to the 
survey (nÂ€=Â€1080). The size of this sample is more than sufficient to generate EFA but 
at the same time small enough to work with for readers who may be using a version 
of SPSS that limits the number of cases to 1,500. (Note: The complete SDR data file, 
which includes 31,362 cases, is available from the textbook’s companion website and 
is titled SDR2010_NSF.sav.)

You’ll notice that in both the post-doc (SDR2010_POSTDOC.sav) and full data file 
(SDR2010_NSF.sav) there is quite a bit of recoding that will need to be performed in 
order to get the data in shape for analysis. This includes defining the missing values, 
recoding the string variables to numeric, and where applicable, reverse coding. I’ve 
taken the liberty to perform this data cleaning for the variables with which we’ll be 
working; however, the remaining variables in the data file have been left as is so that 
you may practice your data cleaning skills in working with ‘real data.’

Let’s look at the data. The first variable in our dataset was the variable used to delimit 
the cases to only respondents who were employed in post-doctoral positions during the 
week of the survey. The next nine variables are those variables with which we will be 
analyzing for the EFA. Each row in the data set still represents one individual. As seen 
in the screenshot below, the SPSS data is in the form of multiple columns that repre-
sent the variables on which the respondents were measured. For the EFA illustration, 
we will work with the nine ordinal satisfaction measures.

http://www.nsf.gov/statistics/srvydoctoratework/
http://www.nsf.gov/statistics/srvydoctoratework/
http://www.nsf.gov/statistics/srvydoctoratework/
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Reviewing the annotated SDR questionnaire available from NSF (see screenshot of 
questionnaire), this is a question set responding to the item, “Thinking about your 
principal job held during the week of OctoberÂ€1, please rate your satisfaction with that 
job’sÂ€ .Â€ .Â€ .” The components of the job to which they responded included (1) salary, 
(2) benefits, (3) job security, (4) job location, (5) opportunities for advancement, (6) 
intellectual challenge, (7) level of responsibility, (8) degree of independence, and (9) 
contribution to society.
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Step 1. To conduct categorical principal components analysis, go to “Analyze” in the 
top pull-down menu, then select “Dimension Reduction,” and then select “Optimal 
Scaling.” Again, please remember that if you do not have this SPSS add-on, you will 
not see an option for “Optimal Scaling.” Following the screenshot below (CATPCA: 
Step 1) produces the “Factor Analysis” dialog box.

Step 2. Select the radio button for “Some variable(s) are not multiple nominal” (had 
all the variables been nominal, we would have selected the first option) and “one set” 
(see screenshot CATPCA: Step 2).
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Step 3. Click the nine satisfaction measures and move into the “Analysis Variables” 
box by clicking the arrow button (see screenshot CATPCA: Step 3).

Step 4. Click in “Define scale and weight” (displayed under the Analysis Variable box) 
to change the optimal scaling level (see screenshot CATPCA: Step 4). The default is ‘spline 
ordinal.’ We will select the radio button for ‘ordinal.’ Spline ordinal and ordinal optimal 
scaling levels are similar in that they both preserve the order of the categories in the opti-
mally scaled variable. Ordinal optimal scaling results in a better fitting transformation than 
spline ordinal but is less smooth. Click Continue to return to the main CATPCA page.
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Step 5. From the CATPCA page (see screenshot CATPCA: Step 3), click on 
Options to bring up the Options dialog box. We will leave all default selections as 
is on this page (see screenshot CATPCA: Step 5). In terms of the Normalization 
Method, the default selection is Variable Principal. This method optimizes the 
relationship between variables and is an appropriate selection if the correlation 
between variables is your primary interest. Click Continue to return to the main 
CATPCA page.

Step 6. From the CATPCA page (see screenshot CATPCA: Step 3), click on Out-
put to bring up the Output dialog box (see screenshot CATPCA: Step 6). Object 
scores and Component loadings should already be selected, and we will keep those 
selected. Place a checkmark for the remaining tables including Iteration history, 
Correlations of original variables, Correlations of transformed variables, and Var-
iance accounted for. Click Continue to return to the main CATPCA page. Move all 
the satisfaction variables from the Quantified Variables list to the Category Quan-
tifications box by clicking the arrow in the middle. Repeat this process to move the 
variables to the Descriptive Statistics box. Click Continue to return to the main 
CATPCA page.
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Step 7. From the CATPCA page (see screenshot CATPCA: Step 3), click on Object 
(listed under Plots in the right navigational menu) to bring up the Object and Variable 
Plots dialog box (see screenshot CATPCA: Step 7). Object points should already be 
selected, and we will keep that option selected. We will place a checkmark for Objects 
and variables (biplot) with variable coordinates Loadings. We will keep the default 
options selected for Biplot and Triplot Variables and Label Objects. Click Continue to 
return to the main CATPCA page.
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Step 8. From the CATPCA page (see screenshot CATPCA: Step 3), click on Loading 
(listed under Plots in the right navigational menu) to bring up the Loading Plots dialog 
box (see screenshot CATPCA: Step 8). Display component loadings should already be 
selected, and we will keep that option selected. We will place a checkmark for Include 
Centroids. Click Continue to return to the main CATPCA page.

Step 9. From the CATPCA page (see screenshot CATPCA: Step 3), click ‘paste’ to 
open the syntax created from the commands just generated (see screenshot CATPCA: 
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Step 9). In some versions of SPSS, an error occurs in the print command line in speci-
fying to print the original variable correlation matrix such that an ‘O’ is included rather 
than a space. If this error occurs in your syntax, remove the ‘O’ and then run the syntax 
to generate the output.

When the erroneous ‘O’ is removed (you must manually do this using your delete or 
backspace key), ‘OBJECT’ and ‘CORR’ will appear in red, indicating that the original 
variable correlation matrix will be printed in the output.

Interpreting the CATPCA output. Annotated results are presented in TableÂ€9.8.

■■ TABLE 9.8

SPSS Results for the Categorical Principal Components Analysis Example



■■ TABLE 9.8â•‡ (continued)

SPSS Results for the Categorical Principal Components Analysis Example



■■ TABLE 9.8â•‡ (continued)

SPSS Results for the Categorical Principal Components Analysis Example



■■ TABLE 9.8â•‡ (continued)

SPSS Results for the Categorical Principal Components Analysis Example



■■ TABLE 9.8â•‡ (continued)

SPSS Results for the Categorical Principal Components Analysis Example
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Finally, we get a scatterplot that you will see in color but is 
presented in grayscale here.  Each variable is black and each 
case is green (grayscale here).  Factor 1 is able to capture a 
bit more of the variance among the variables and cases and 
thus can explain the variance a bit better than factor 2 we 
see the variables and cases to be more tightly grouped (-4 
to 4 for factor 2 as compared to -5 to 5 for factor 1).  This 

suggests less variable variance captured. 
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The component loadings scatterplot graphs the coordinates for each 
variable on each factor, allowing us to see how the variables relate to 
each other as well as the factors. Variables that lump together suggest 

distinguishable factors.  In this case, we see the variables vary 
substantially along dimension 2 (i.e., factor 2) but tend to fall within a 

more narrow range of dimension 1 (i.e., factor 1) (between about .40 and 
.80).  Here we can see how the two variables with large loadings on factor 
2 are differentiating from those of factor 1.  This may be where a decision 
is made to remove the two variables that appear to load on factor 2 and 

re-run.  If the model improves without those items, there will be a clearer, 
tighter grouping of the variables on their respective factor(s).

The lines from the centroid to each variable are eigenvectors and the 
variable is at the eigenvalue for its vector. Thus the eigenvalue is a 

distance point along an eigenvector. With conventional EFA, a rotation 
strategy is applied to make interpretation easier.  Here, we can imagine 

rotation such that both dimensions are rotated counterclockwise 45 
degrees. In doing so, the axis of each factor (or dimension) would be 

going through a cloud of points (which represent the variables).

■■ TABLE 9.8â•‡ (continued)

SPSS Results for the Categorical Principal Components Analysis Example



■■ TABLE 9.8â•‡ (continued)

SPSS Results for the Categorical Principal Components Analysis Example
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Finally, we get a scatterplot that you will see in color but is 
presented in grayscale here.  Each variable is black and each 
case is green (grayscale here).  Factor 1 is able to capture a 
bit more of the variance among the variables and cases and 
thus can explain the variance a bit better than factor 2 we 
see the variables and cases to be more tightly grouped (-4 
to 4 for factor 2 as compared to -5 to 5 for factor 1).  This 

suggests less variable variance captured. 
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9.4â•‡� DATA SCREENING

As you may recall, there were a number of assumptions associated with conventional 
exploratory factor analysis. These included (a) independence, (b) linearity, (c) absence 
of outliers (both univariate and multivariate), and (d) lack of extreme multicollinearity 
and singularity. Although fixed values of X were discussed in assumptions, this is not 
an assumption that will be tested, but is instead related to the use of the results (i.e., 
extrapolation and interpolation).

9.4.1â•‡� Independence

Testing for this assumption is a bit nebulous in exploratory factor analysis, as there are 
no independent and dependent variables that allow for this type of examination. In the 
absence of statistical evidence, we will rely on theoretical evidence: If the units have 
been randomly sampled from a population, there is evidence that the assumption of 
independence has been met.

9.4.2â•‡� Linearity

Linearity is an important assumption since correlation matrices underlie conventional 
EFA. You may recall that when you studied bivariate correlations, as well as simple 
and multiple regression, that scatterplots were one way that linearity could be exam-
ined. We will again use scatterplots to visually assess linearity. The challenge with 
EFA, as compared to other procedures where scatterplots have been applied, is the 
large (and often very large) number of variables, which makes review of all possible 
pairs of variables quite daunting and an inefficient use of your time. For example, with 
10 variables (which tends to be toward the lower limit of the number of variables often 
applied to EFA), there are [10(10 − 1)]/2 or 45 different pairwise combinations of the 
variables, and with 20 variables there are nearly 200 combinations! One work-around 
for this is to generate and examine a few random scatterplots, assuming that these 
are representative of the entire population of scatterplots. Don’t be surprised if the 
scatterplots do not provide picture-perfect linear relationships, and don’t be ready to 
discard or transform variables if that is indeed the case—those consequences should be 
reserved only for cases where obvious curvilinearity is observed. For the PIAAC data, 
IÂ€ran a number of bivariate scatterplots and while not all scatterplots suggested a strong 
linear relationship, there does not appear to be evidence to suggest curvilinear asso-
ciations. One example, graphing ‘index of use of numeracy skills at work (basic and 
advanced)’ with ‘index of use of reading skills at home (prose and document texts),’ 
is presented here:
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9.4.3â•‡� Absence of Outliers

As discussed previously, factor analysis is quite robust to violations of the assump-
tion of normality except where tests of inference are used to determine the number 
of factors to retain, and in this case, multivariate normality is an assumption. For this 
illustration, we are using maximum likelihood and thus will be thorough in our exam-
ination of multivariate normality.

We can examine univariate normality tests, which are less sensitive than multi-
variate normality tests, through skewness and kurtosis, formal tests of normality, 
and plots (e.g., Q-Q plots). Multivariate outliers are evidenced by statistically sig-
nificant Mahalanobis distance scores (alphaÂ€=Â€.001 if you tend toward the liberal 
edge, which is appropriate with EFA), evaluated using a chi-square distribution 
with degrees of freedom equal to the number of variables. To generate Mahalano-
bis distance, we will generate multiple regression, applying all the variables as 
independent variables with the dependent variable being a binary variable coded 
1 for potential outliers and 0 for all other variables within the model. The pro-
cess for examining outliers is therefore to look for univariate outliers first. If any 
are detected, then screen for multivariate outliers. In terms of multivariate nor-
mality, a macro in SPSS (DeCarlo, 1997) (illustrated in the MANOVA chapter) 
can also be used to examine a number of multivariate normality indices including 
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(a) multivariate kurtosis (Mardia, 1970), (b) multivariate skewness and kurtosis 
based on Small’s (1980) multivariate extension of univariate skewness and kurtosis 
(Looney, 1995), (c) multivariate normality omnibus test (Looney, 1995), (d) larg-
est squared and plot of squared Mahalanobis distance, and (e) critical values for 
hypothesis test for a single multivariate outlier using Mahalanobis distance (Penny, 
1996).

Additionally, not only are we concerned with outlying cases, but we are also concerned 
with outlying variables and will need to examine our data for both. These outlying 
variables, which can be removed from the model if/when identified, can be determined 
by examination of the following: (a) squared multiple correlations with all other varia-
bles and (b) weak correlations with the factors that are identified in the factor analytic 
model.

Reviewing univariate normality for the PIAAC data, skewness for all measures are 
within the range of +/− 2.0 and kurtosis for all measures are within +/− 7.0, suggesting 
evidence of normality.

Descriptive Statistics

N Skewness Kurtosis

Statistic Statistic Std. Error Statistic Std. Error

Index of use of numeracy skills at home (basic 
and advanced—derived)

191 1.220 .176 5.663 .350

Index of use of numeracy skills at work (basic 
and advanced—derived)

191 .929 .176 2.516 .350

Index of use of ICT skills at home (derived) 191 1.048 .176 3.149 .350

Index of use of reading skills at home (prose 
and document texts—derived)

191 .837 .176 1.896 .350

Index of use of task discretion at work (derived) 191 1.431 .176 2.249 .350

Index of learning at work (derived) 191 .449 .176 -.450 .350

Index of use of planning skills at work (derived) 191 .479 .176 -1.121 .350

Index of readiness to learn (derived) 191 .878 .176 -.110 .350

Index of use of ICT skills at work (derived) 191 .457 .176 .630 .350

Index of use of influencing skills at work 
(derived)

191 1.018 .176 1.894 .350

Index of use of reading skills at work (prose and 
document texts—derived)

191 .924 .176 2.960 .350

Index of use of writing skills at work (derived) 191 1.116 .176 3.656 .350

Index of use of writing skills at home (derived) 191 .642 .176 4.601 .350

Valid N (listwise) 191

Shapiro-Wilk’s formal test of normality was statistically significant for all variables suggesting evidence of 
nonnormality.
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Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Index of use of numeracy skills at home (basic and 
advanced—derived)

.098 191 .000 .920 191 .000

Index of use of numeracy skills at work (basic and 
advanced—derived)

.075 191 .011 .950 191 .000

Index of use of ICT skills at home (derived) .068 191 .030 .951 191 .000

Index of use of reading skills at home (prose and  
document texts—derived)

.062 191 .075 .964 191 .000

Index of use of task discretion at work (derived) .161 191 .000 .878 191 .000

Index of learning at work (derived) .118 191 .000 .938 191 .000

Index of use of planning skills at work (derived) .183 191 .000 .874 191 .000

Index of readiness to learn (derived) .142 191 .000 .895 191 .000

Index of use of ICT skills at work (derived) .077 191 .007 .983 191 .021

Index of use of influencing skills at work (derived) .103 191 .000 .927 191 .000

Index of use of reading skills at work (prose and  
document texts—derived)

.107 191 .000 .951 191 .000

Index of use of writing skills at work (derived) .124 191 .000 .915 191 .000

Index of use of writing skills at home (derived) .106 191 .000 .937 191 .000

a. Lilliefors Significance Correction

The normal and detrended Q-Q plots suggest at least one potential outlying case for 
all 13 variables. For example, the ‘index of use of writing skills at work’ suggests that 
cases 1–6 may be outliers.
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Reviewing boxplots, there are quite a few variables that have outliers suggested by 
the graph. For many (but not all) of the variables, these are at least some of the same 
cases that showed up as potential outliers in the Q-Q plots. The boxplot for the ‘index 
of use of writing skills at work’ suggests additional outliers that were not as evident in 
reviewing the Q-Q plot—not only cases 1–6 but also cases 7–8 and 188–191.
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Now that we’ve screened for univariate outliers and have identified cases that are sug-
gestive of outliers, we need to screen for multivariate outliers. To do so, we create a 
new binary variable with ‘1’ denoting that it showed up as an outlier and ‘0’ denoting 
nonoutlying cases. This has been saved in the PIAAC.EFA.sav data file and is labeled 
‘OUTLIER.’ This binary variable will be our dependent variable in a multiple regres-
sion model with all 13 of the index variables as the independent variables. (By this 
point in your statistics career, it is assumed that you are familiar with creating a new 
variable, thus the process for doing so is not presented. Should you need a refresher 
on generating multiple regression, please review the earlier chapter in this text.) When 
generating the multiple regression model, we are not interested in the results of the 
analysis. Rather, we run it simply to save the Mahalanobis distance values (saved as 
MAH_1 in the data file). Multivariate outliers are evidenced by statistically significant 
Mahalanobis distance values, evaluated using a chi-square distribution with degrees of 
freedom equal to the number of variables. With alpha of .001, our chi-square critical 
value is 34.53, and our Mahalanobis distance values range from 1.84 to 56.11. For-
tunately, there are only five cases with statistically significant Mahalanobis distance 
values.

Mahalanobis Distance

Frequency Percent Valid Percent Cumulative Percent

Valid 37.54589 1 20.0 20.0 20.0

39.71767 1 20.0 20.0 40.0

42.84545 1 20.0 20.0 60.0

43.86517 1 20.0 20.0 80.0

56.11096 1 20.0 20.0 100.0

Total 5 100.0 100.0

We will retain these cases for the illustration given that factor analysis is relatively 
robust to violations with the exception of tests of inference. (Had we filtered them 
out, we would see that we still end up with a two-factor solution, however only seven 
variables remain in the model due to the communalities greater than 1 error. For prac-
tice, you may want to try this yourself!) In this illustration, we have used maximum 
likelihood so we are concerned with multivariate normality. As we present our results, 
we will caution readers to this limitation of our data.

In terms of outlying variables, our final factor model did not suggest this was problem-
atic (i.e., both factors had multiple items).

9.4.4â•‡� Extreme Multicollinearity and Singularity

For EFA, the simplest method to detect extreme multicollinearity and singularity is to 
conduct a series of multiple regression models, one regression model for each varia-
ble where that variable is the dependent variable and all remaining variables are the 
independent variables. If any of the resultant Rk

2  values are close to one (greater than 
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.9 is a good guideline to go by), then there may be an extreme collinearity problem. 
However, large R2 values may also be due to small sample sizes; thus, be cautious in 
interpretation in cases where the number of cases is small. If the number of variables is 
greater than or equal to n, then perfect collinearity is a possibility. The results are not 
presented here for brevity; however, the largest multiple R squared values were under 
.50, suggesting no problems with extreme multicollinearity.

To prevent singularity, none of the variables that are being used is a composite variable 
for which the component variables are also included in the EFA model.

9.5â•‡� RESEARCH QUESTION TEMPLATE  
AND EXAMPLE WRITE-UP

Finally, here is an example paragraph for the results of the exploratory factor analysis. 
Recall that our graduate research assistants, Addie and Oso, were assisting Dr.Â€Wes-
ley, a faculty member in higher education. Specifically, Dr.Â€Wesley was interested 
in better understanding the underlying constructs of measures of perceived use of 
skills. The research question presented to Dr.Â€Wesley from Addie and Oso included 
the following: What is the underlying factor structure for perceived use of skills at 
home and work?

Addie and Oso then assisted Dr.Â€Wesley in conducting exploratory factor analysis, and 
a template for writing the research question for exploratory factor analysis is presented 
below.

What is the underlying factor structure for [variable set]?

It may be helpful to preface the results of the exploratory factor analysis with 
information on an examination of the extent to which the data were thoroughly 
screened.

Prior to conducting the exploratory factor analysis, the data were screened 
to determine the extent to which the assumptions associated with explora-
tory factor analysis were met. These assumptions included (a) independence, 
(b) linearity, (c) absence of outliers (both univariate and multivariate), and 
(d) lack of extreme multicollinearity and singularity. Because the data were 
not randomly sampled, there is a possibility that the assumption of inde-
pendence has not been met. Scatterplots of each combination of variables 
were generated and generally suggested that the assumption of linearity 
was feasible, as there was no evidence of curvilinear or other nonlinear rela-
tionships. Normal and detrended Q-Q plots and boxplots suggest the pres-
ence of a few univariate outliers. These outlying points were examined as 
potential multivariate outliers. Mahalanobis distance values were computed 
using the outlying points coded as binary dependent variables and all other 
variables as independent variables in a multiple regression model. Five of the 
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cases had statistically significant Mahalanobis distance values. These items 
were retained, as EFA is relatively robust to violations of normality with the 
exception of tests of inference. However, given that maximum likelihood was 
the estimation method, multivariate normality was a concern. Given there is 
some evidence to suggest multivariate nonnormality, the model was rerun 
excluding the potential multivariate outliers. AÂ€two-factor solution with seven 
of the eight variables was achieved. Because the variable was theoretically 
important, it was retained in the model and the solution reflects all eight 
variables. Extreme multicollinearity was screened for by conducting a series 
of multiple regression models, one regression model for each variable where 
that variable is the dependent variable and all other variables are the inde-
pendent variables. There were no multiple R squared values that were close 
to one; all were under .50, suggesting no problems with multicollinearity. To 
prevent singularity, none of the variables used are composite variables for 
which the component variables are also included.

Here is an example write-up of how the results for exploratory factor analysis can be 
presented (remember that this will be prefaced by the previous paragraph reporting the 
extent to which the data were thoroughly screened).

Evidence for construct validity of indices of home and work skills from the 
PIAAC was obtained using exploratory factor analysis.

Criteria that is often used to determine factorability of variables was applied 
in this analysis. These initial factorability criteria included examination of the 
following: (1) bivariate correlations, (2) Kaiser-Meyer-Olkin measure of sampling 
adequacy (overall and individual), (3) Bartlett’s test of sphericity, and (4) com-
munalities. Based on communalities above 1.0, there were five variables that 
were removed during this initial stage of determining factorability. The removal 
of these variables was done through an iterative process of removing the index 
with the highest communality, rerunning the EFA, and then examining the com-
munalities. This process was repeated for each of the indices removed. The 
analysis presented is based on the remaining eight items.

Three of the eight items correlated at least .30 with at least one other item 
and an additional variable was nearly .30 (see TableÂ€1). The overall Kaiser- 
Meyer-Olkin measure of sampling adequacy was .695, larger than the recom-
mended value of .50. In addition, the measure of sampling adequacy values 
for the individual items were all larger than the recommended value of .50. 
Bartlett’s test of sphericity was statistically significant [χ2 (28) = 193.696, p < 
.001]. An additional criterion commonly used to determine factorability is that 
communalities should be above the recommended value of .30, providing evi-
dence of shared variance among the items. In reviewing extracted commu-
nalities of the eight items, one-half of the variables (4 of the 8 variables) were 
below .30 (see TableÂ€2). However, given the other criteria for determining 
factorability were met, it was determined that it was reasonable to proceed 
with determining the factor structure of the eight items.
Maximum likelihood estimation with promax rotation was used to extract 

the factors from the data. Parallel analysis was used to determine the number 
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■■ TABLE 1

Correlation Matrix for Cognitive and Work Ability Indices (NÂ€=Â€191)

Item 1 2 3 4 5 6 7

1.	Index of use of numeracy skills at home (basic and advanced) —

2.	Index of use of numeracy skills at work (basic and advanced) .292 —

3.	Index of use of ICT skills at home (derived) .554 .176 —

4.	Index of use of reading skills at home (prose and document texts) .418 .166 .374 —

5.	Index of use of task discretion at work .015 .086 .014 .049 —

6.	Index of learning at work .001 .098 .045 .107 .037 —

7.	Index of use of planning skills at work −.202 .013 −.111 −.048 .140 .139 —

8.	Index of readiness to learn .246 .161 .341 .296 .206 .167 .026

■■ TABLE 2

Factor Loadings and Communalities Based on Maximum Likelihood Analysis for Cognitive and 
Work Ability Indices (NÂ€=Â€191)

Item
Indices of 

Cognitive Skills
Indices of Work 

Abilities Communality

1.	Index of use of numeracy skills at home 
(basic and advanced)

.833 −.076 .741

2.	Index of use of numeracy skills at work 
(basic and advanced)

.333 .124 .116

3.	Index of use of ICT skills at home (derived) .676 .145 .458

4.	Index of use of reading skills at home (prose 
and document texts)

.535 .214 .303

5.	Index of use of task discretion at work .074 .315 .100

6.	Index of learning at work .077 .305 .094

7.	Index of use of planning skills at work −.168 .273 .121

8.	Index of readiness to learn .436 .549 .424

of factors to retain. Both 100 parallel datasets using artificial normally distrib-
uted raw data and 1,000 parallel datasets using permutated data suggested 
a two-factor model was appropriate (i.e., the first two raw data eigenval-
ues were greater than the random and permutated mean and 95th percentile 
eigenvalues; all other raw data eigenvalues were less in value). Although a 
more subjective tool for determining the number of factors, the scree plot 
indicated the eigenvalues leveled off after two factors, again supporting a 
two-factor solution. Interpretation of a two-factor solution was also plausible 
and was a consideration in retaining two factors. The two-factor solution rep-
resented about 30% of the variance explained when extracted. The correlation 
between the two extracted factors was .165.
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All items contributed to a simple factor structure and had a primary fac-
tor loading above the recommended .30 with one exception—index of use of 
planning skills at work—which had a primary factor loading in the structure 
matrix of .273. One variable (index of readiness to learn) had similar factor 
loadings for each factor but loaded slightly stronger on factor two. All other 
variables had a strong primary loading with only one of the two factors in the 
factor structure. However, for interpretative purposes, this item was grouped 
with factor two. Table 2 provides the factor loading pattern matrix for the final 
solution. The names for the two factors are (1) Indices of Cognitive Skills and 
(2) Indices of Work Abilities. The results of the factor analysis lend support to 
internal structure validity evidence supporting the conclusion that the scores 
from this instrument are a valid assessment of skills and abilities, specifically 
Indices of Cognitive Skills and Indices of Work Abilities. Composite scores 
were created for the two factors by computing the mean sum of the items that 
loaded most strongly on each of the factors.

PROBLEMS

Conceptual Problems

1.	 If your research goal is to attach meaning to the identified factors, which form of 
factor analysis is needed?
a.	 Common factor analysis
b.	 Principal component analysis

2.	 What is the recommended sample size for EFA?
a.	 At least 100
b.	 At least 300
c.	 At least 500
d.	 Current research does not recommend adhering to an absolute number of  

cases threshold
3.	 Which one of the following commonly held recommendations has been shown by 

simulation research to often overestimate the number of factors?
a.	 Bartlett’s test
b.	 Kaiser’s rule
c.	 Measure of sampling adequacy
d.	 Scree plot

4.	 A researcher calculates KMO measure of sampling adequacy and finds a value 
of .60. Does this provide one form of acceptable evidence to continue the factor 
analysis?
a.	 Yes
b.	 No

5.	 Which one of the following is not used as an index to determine the initial factor-
ability of items?
a.	 Correlations among observed items
b.	 Communalities
c.	 Measure of sampling adequacy
d.	 Scree plot
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â•‡ 6.	 A researcher assumes the items they are factoring are related. Which one of the 
following rotation methods should be applied?
a.	 Oblique
b.	 Orthogonal

â•‡ 7.	 A researcher generates factor analysis and finds that the various indices all suggest 
different numbers of factors. How should the researcher determine the number of 
factors?
a.	 Select the fewest number of factors suggested by the results.
b.	 Select the number of factors based on where the elbow bends in the scree 

plot.
c.	 Apply Kaiser’s rule, selecting the number of factors with eigenvalues greater 

than one.
d.	 Use theory to interpret results from all indices, selecting the number of factors 

supported statistically and defensible by theory.
â•‡ 8.	 Which one of the following is not an assumption of factor analysis?

a.	 Absence of outliers
b.	 Homogeneity of variances
c.	 Linearity
d.	 Noncollinearity

â•‡ 9.	 The measurement scale for conventional factor analysis should be at least which 
one of the following?
a.	 Nominal
b.	 Ordinal
c.	 Interval
d.	 Ratio

10.	 What factor loading is recommended for retaining a variable in a factor?
a.	 .10
b.	 .30
c.	 .60
d.	 .80

Computational Problems

1.	 Using the CH9_HW1_PRESCHOOL.sav dataset, conduct exploratory factor 
analysis following the steps in this chapter, using maximum likelihood estimation 
and promax rotation. Determine initial factorability using overall MSA, Bartlett’s 
test of sphericity, and communalities. Review the pattern and structure matrix for 
the initial solution, and determine the variables that appear to cluster together 
based on the pattern matrix.

2.	 Using the CH9_HW2_PIAAC_NORWAY.sav dataset, conduct exploratory fac-
tor analysis following the steps in this chapter, using maximum likelihood esti-
mation and promax rotation. Determine initial factorability using overall MSA, 
Bartlett’s test of sphericity, and communalities. Review the pattern and structure 
matrix for the initial solution, and determine the variables that appear to clus-
ter together based on the pattern matrix. (Note: This data has been delimited to 
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individuals who indicated their highest level of school was ‘above high school’ 
[B_Q01a_TÂ€=Â€3] and who were employed the year prior to completing the survey 
[B_Q15aÂ€=Â€1].)

Interpretive Problem

1.	 Use SPSS to conduct exploratory factor analysis with the continuous PIAAC 
index variables from Italy (CH9_HW_INTERPRETATIVE_ITALY.sav). The data 
file has been delimited to include only individuals who reported having ‘above 
high school’ education [B_Q01a_TÂ€=Â€3] and who had complete data on the index 
variables. Write up the results. Just for fun, compare the results using maximum 
likelihood estimation as compared to other estimation results. For even further 
fun, conduct CATPCA using the categorized index variables.

REFERENCES

Borsboom, D. (2006). The attack of the psychometrician. Psychometrika, 71(3), 425–440.

Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford Press.

Bryant, F. B.,Â€& Yarnold, P. R. (1995). Principal-components analysis and exploratory confirmatory 
factor analysis. In L. G. GrimmÂ€& P. R. Yarnold (Eds.), Reading and understanding multivariate 
statistics (pp.Â€99–136). Washington, DC: American Psychological Association.

Cattell, R. B. (1978). The scientific use of factor analysis. New York, NY: Plenum.

Child, D. (2006). The essentials of factor analysis (3rd ed.). New York, NY: Continuum International 
Publishing.

Comrey, A. L.,Â€& Lee, H. B. (1992). A first course in factor analysis. Hillsdale, NJ: Erlbaum.

DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2, 292–307.

Fabrigar, L. R.,Â€& Wegener, D. T. (2012). Exploratory factor analysis: Understanding statistics. New 
York, NY: Oxford University Press.

Gaskin, C. J.,Â€& Happell, B. (2014). On exploratory factor analysis: AÂ€review of recent evidence, an 
assessment of current practice, and recommendations for future use. International Journal of 
Nursing Studies, 51, 511–521.

Glorfeld, L. W. (1995). An improvement on Horn’s parallel analysis methodology for selecting 
the correct number of factors to retain. Educational and Psychological Measurement, 55, 
377–393.

Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Erlbaum.

Guadagnoli, E.,Â€& Velicer, W. (1988). Relation of sample size to the stability of component patterns. 
Psychological Bulletin, 103(2), 265–275.

Guilford, J. P. (1954). Psychometric methods (Vol.Â€2nd ed.). New York, NY: McGraw-Hill.

Hahs-Vaughn, D. L. (2005). AÂ€primer for using and understanding weights with national datasets. Jour-
nal of Experimental Education, 73(3), 221–248.

Hahs-Vaughn, D. L. (2006a). Analysis of data from complex samples. International Journal of 
ResearchÂ€& Method in Education, 29(2), 163–181.

Hahs-Vaughn, D. L. (2006b). Weighting omissions and best practices when using large-scale data in 
educational research. Association for Institutional Research Professional File, 101, 1–9.



439Exploratory Factor Analysis  â†œæ¸€å±®  â†œæ¸€å±®

Hahs-Vaughn, D. L., McWayne, C. M., Bulotskey-Shearer, R. J., Wen, X.,Â€& Faria, A. (2011a). Com-
plex sample data recommendations and troubleshooting. Evaluation Review, 35(3), 304–313. 
doi: 10.1177/0193841X11412070

Hahs-Vaughn, D. L., McWayne, C. M., Bulotskey-Shearer, R. J., Wen, X.,Â€& Faria, A. (2011b). Meth-
odological considerations in using complex survey data: An applied example with the head start 
family and child experiences survey. Evaluation Review, 35(3), 269–303.

Hendrickson, A. E.,Â€& White, P. O. (1964). Promax: AÂ€quick method for rotation to oblique simple 
structure. British Journal of Statistical Psychology, 17, 65–70.

Henson, R. K.,Â€& Roberts, J. K. (2006). Use of exploratory factor analysis in published research: Com-
mon errors and some comment on improved practice. Educational and Psychological Measure-
ment, 66, 393–416.

Horn, J. L. (1965). AÂ€rationale and test for the number of factors in factor analysis. Psychometrika, 30, 
179–185.

Hutcheson, G.,Â€& Sofroniou, N. (1999). The multivariate social scientist: Introductory statistics using 
generalized linear models. Thousand Oaks, CA: Sage

Kaiser, H. K. (1970). AÂ€second generation little jiffy. Psychometrika, 35(4), 401–415.

Kaiser, H. K.,Â€& Rice, J. (1974). Little jiffy, mark IV. Educational and Psychological Measurement, 
34, 111–117.

Kish, L.,Â€& Frankel, M. R. (1973, OctoberÂ€17). Inference from complex samples. Paper presented at the 
annual meeting of the Royal Statistical Society.

Kish, L.,Â€& Frankel, M. R. (1974). Inference from complex samples. Journal of the Royal Statistical 
Society, Series B, 36, 1–37.

Kline, P. (1979). Psychometrics and psychology. London: Academic Press.

Korn, E. L.,Â€& Graubard, B. I. (1995). Examples of differing weighted and unweighted estimates from 
a sample survey. American Statistician, 49, 291–305.

Lawley, D. N.,Â€& Maxwell, A. E. (1971). Factor analysis as a statistical method (2nd ed.). London: 
Butterworths.

Lee, E. S., Forthofer, R. N.,Â€& Lorimor, R. J. (1989). Analyzing complex survey data. Newbury Park, 
CA: Sage.

Looney, S. W. (1995). How to use tests for univariate normality to assess multivariate normality. Amer-
ican Statistician, 49, 64–70.

Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical Software, 9(8), 1–19.

MacCallum, R. C., Widaman, K. F., Zhang, S.,Â€& Hong, S. (1999). Sample size in factor analysis. 
Psychological Methods, 4, 84–99.

Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 
57, 519–530.

National Science Foundation. (2010). Survey of doctorate recipients 2010. Retrieved from http://www.
nsf.gov/statistics/srvydoctoratework/

Nunally, J. C. (1978). Psychometric theory (2nd ed.). New York, NJ: McGraw Hill.

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using 
parallel analysis and Velicer’s MAP test. Behavior Research Methods, InstrumentsÂ€& Comput-
ers, 32(3), 396–402.

Penny, K. I. (1996). Appropriate critical values when testing for a single multivariate outlier by using 
the Mahalanobis distance. Applied Statistics, 45, 73–81.

http://www.nsf.gov/statistics/srvydoctoratework/
http://www.nsf.gov/statistics/srvydoctoratework/


440  â†œæ¸€å±®  â†œæ¸€å±® 	E xploratory Factor Analysis

Pfeffermann, D. (1993). The role of sampling weights when modeling survey data. International Sta-
tistical Review, 61(2), 317–337.

Preacher, K. J.,Â€& MacCallum, R. C. (2002). Exploratory factor analysis in behavior genetics research: 
Factor recovery with small sample sizes. Behavior Genetics, 32(2), 153–161.

Skinner, C. J., Holt, D.,Â€& Smith, T. M. F. (Eds.). (1989). Analysis of complex samples. New York: Wiley.

Small, N. J. H. (1980). Marginal skewness and kurtosis in testing multivariate normality. Applied Sta-
tistics, 29, 85–87.

Streiner, D. L. (1998). Factors affecting reliability of interpretations of scree plots. Psychological 
Reports, 83, 687–694.

Suhr, D. D. (2006). Exploratory or confirmatory factor analysis? Paper presented at the SAS User’s 
Group International 31 (SUGI), San Francisco, CA.

Thompson, B.,Â€& Daniel, L. G. (1996). Factor analytic evidence for the construct validity of scores: 
AÂ€historical overview and some guidelines. Educational and Psychological Measurement, 56(2), 
197–208.

Zwick, W. R.,Â€& Velicer, W. F. (1982). Factors influencing four rules for determining the number of 
components to retain. Multivariate Behavioral Research, 17, 253–269.

Zwick, W. R.,Â€& Velicer, W. F. (1986). Comparison of five rules for determining the number of compo-
nents to retain. Psychological Bulletin, 99, 432–442.


	Cover
	Title
	Copyright
	Contents
	Preface
	Acknowledgments
	1 Multivariate Statistics
	1.1 What Are Multivariate Statistics?
	1.2 Decision Rules
	1.3 Coverage of the Textbook
	1.4 Layout of the Textbook
	1.5 Overarching Goal of the Textbook

	2 Univariate and Bivariate Statistics Review
	2.1 Fundamental Concepts
	2.2 Foundational Univariate Statistics
	2.3 Foundational Bivariate Statistics

	3 Data Screening
	3.1 Independence
	3.2 Variance
	3.3 Normality
	3.4 Linearity
	3.5 Noncollinearity

	4 Multiple Linear Regression
	4.1 What Multiple Linear Regression Is and How It Works
	4.2 Mathematical Introduction Snapshot
	4.3 Computing Multiple Linear Regression Using SPSS
	4.4 Data Screening
	4.5 Power Using G*Power
	4.6 Research Question Template and Example Write-Up

	5 Logistic Regression
	5.1 What Logistic Regression Is and How It Works
	5.2 Mathematical Introduction Snapshot
	5.3 Computing Logistic Regression Using SPSS
	5.4 Data Screening
	5.5 Power Using G*Power
	5.6 Research Question Template and Example Write-Up

	6 Multivariate Analysis of Variance: Single Factor, Factorial, and Repeated Measures Designs
	6.1 What Multivariate Analysis of Variance Is and How It Works
	6.2 Mathematical Introduction Snapshot
	6.3 Computing MANOVA Using SPSS
	6.4 Data Screening
	6.5 Power Using G*Power
	6.6 Research Question Template and Example Write-Up

	7 Discriminant Analysis
	7.1 What Discriminant Analysis Is and How It Works
	7.2 Mathematical Introduction Snapshot
	7.3 Computing Discriminant Analysis Using SPSS
	7.4 Data Screening
	7.5 Power Using G*Power
	7.6 Research Question Template and Example Write-Up

	8 Cluster Analysis
	8.1 What Cluster Analysis Is and How It Works
	8.2 Mathematical Introduction Snapshot
	8.3 Computing Cluster Analysis Using SPSS
	8.4 Data Screening
	8.5 Research Question Template and Example Write-Up

	9 Exploratory Factor Analysis
	9.1 What Exploratory Factor Analysis Is and How It Works
	9.2 Mathematical Introduction Snapshot
	9.3 Computing EFA Using SPSS
	9.4 Data Screening
	9.5 Research Question Template and Example Write-Up

	10 Path Analysis, Confirmatory Factor Analysis, and Structural Equation Modeling
	10.1 What Path Analysis and Confirmatory Factor Analysis Are and How They Work
	10.2 Mathematical Introduction Snapshot
	10.3 Computing Path Analysis and Confirmatory Factor Analysis Using LISREL
	10.4 Data Screening
	10.5 Power
	10.6 Research Question Template and Example Write-Up

	11 Multilevel Linear Modeling
	11.1 What Multilevel Linear Modeling Is and How It Works
	11.2 Mathematical Introduction Snapshot
	11.3 Computing Multilevel Modeling Using HLM
	11.4 Data Screening
	11.5 Power Using Optimal Design
	11.6 Research Question Template and Example Write-Up

	12 Propensity Score Analysis
	12.1 What Propensity Score Analysis Is and How It Works
	12.2 Mathematical Introduction Snapshot
	12.3 Computing Propensity Score Analysis Using R
	12.4 Example Write-Up

	Appendix A: An Introduction to Matrix Algebra
	A.1 Matrices
	A.2 Calculations With Matrices
	A.3 Types of Matrices
	A.4 Matrices and Multivariate Statistics

	Appendix B: Answers to Odd-Numbered Conceptual & Computational Questions
	Index



